浏览全部资源
扫码关注微信
1.中原工学院 机械工业光学传感与测试技术重点实验室,郑州 451191
2.中原工学院 智能机电工程学院(工业设计学院),郑州 451191]
3.赣南科技学院 智能制造与材料工程学院,赣州 341000
4.东莞市环力智能科技有限公司,东莞 523878
徐航,男,1984年生,河南郑州人,博士,副教授;主要研究方向为精密测量、齿轮工程;xuhangzzti@126.com。
聂义轩,男,1999年生,河北保定人,硕士研究生;主要研究方向为精密传动;nyx1216@163.com。
网络出版日期:2025-01-13,
收稿日期:2024-09-09,
移动端阅览
徐航, 聂义轩, 温东杰, 等. RV减速器精度寿命的退化与可靠性评估[J/OL]. 机械传动, 2025,1-9.
XU HANG, NIE YIXUAN, WEN DONGJIE, et al. Degradation and reliability assessment of accuracy life of RV reducers. [J/OL]. Journal of mechanical transmission, 2025, 1-9.
目的
2
工业机器人行业对RV减速器提出了更高的要求,精度寿命体现了减速器传动精度的保持能力,是最重要的设计准则和使用指标之一,为提升精密减速器的精度性能,对可靠性进行评估至关重要。为此,分析了精密减速器的退化特性。
方法
2
以RV80E减速器为例,提出基于Gamma过程的随机退化模型;结合减速器传动精度的性能退化数据,基于矩阵法和最大似然估计法对模型参数进行了估计;采用振动特征数据建立了基于遗传算法优化的高斯过程回归模型,以优化传动精度的预测。
结果
2
结果表明,基于高斯过程回归模型的预测精度显著优于传统回归模型;采用算法预测后的结果更新随机退化模型的后验分布参数,能够有效实现对RV减速器精度寿命可靠度的评估,为进一步进行精度寿命的可靠性优化设计奠定了基础。
Objective
2
The industrial robot industry has put forward higher requirements for RV reducers
and the precision life reflects the ability of the reducer to maintain transmission accuracy
which is one of the most important design criteria and usage indicators. To improve the precision performance of precision reducers
it is crucial to evaluate their reliability. Therefore
the degradation characteristics of precision reducers were analyzed.
Methods
2
Taking the RV80E reducer as an example
a random degradation model based on Gamma process was proposed. Combined with the performance degradation data of the reducer transmission accuracy
the model parameters were estimated based on the matrix method and the maximum likelihood estimation method. A Gaussian process regression model optimized by genetic algorithm was established using vibration characteristic data to optimize the prediction of transmission accuracy.
Results
2
The results show that the prediction accuracy based on Gaussian process regression model is significantly better than that of traditional regression model. The posterior distribution parameters of the random degradation model are updated by using the algorithm to predict the results
which can effectively evaluate the reliability of the accuracy life of RV reducer and lay the foundation for further reliability optimization design of accuracy life.
RV减速器精度保持性Gamma过程高斯过程回归可靠性评估
RV reducerAccuracy retentivityGamma processGaussian process regressionReliability assessment
何卫东,单丽君. RV减速器研究现状与展望[J]. 大连交通大学学报,2016,37(5):13-18.
HE Weidong,SHAN Lijun. Status and development of RV reduce[J]. Journal of Dalian Jiaotong University,2016,37(5):13-18.
程曼,邱城,李金峰,等. 机器人减速器疲劳寿命测试装置开发与研究[J]. 机械传动,2019,43(5):156-160.
CHENG Man,QIU Cheng,LI Jinfeng,et al. Development and research of fatigue life testing device for robot reducer[J]. Journal of Mechanical Transmission,2019,43(5):156-160.
GUO S J,TANG S F,ZHANG D S. A recognition methodology for the key geometric errors of a multi-axis machine tool based on accuracy retentivity analysis[J]. Complexity,2019,2019(1):8649496.
王永青,吴嘉锟,刘阔,等. 数控机床精度保持性的定量评价与误差敏感度分析[J]. 机械工程学报,2019,55(5):130-136.
WANG Yongqing,WU Jiakun,LIU Kuo,et al. Quantitative evaluation and error sensitivity analysis of accuracy retentivity of CNC machine tools[J]. Journal of Mechanical Engineering,2019,55(5):130-136.
弓宇,周晓菊,徐磊琛,等. 机器人用精密减速器传动精度试验方法的研究[J]. 机械传动,2016,40(8):134-137.
GONG Yu,ZHOU Xiaoju,XU Leichen,et al. Research of the transmission accuracy test method of precise reducer used in robot[J]. Journal of Mechanical Transmission,2016,40(8):134-137.
袁容. 基于性能退化分析的可靠性方法研究[D]. 成都:电子科技大学,2015:23-27.
YUAN Rong. Research on reliability modeling and analysis methods based on the performance degradation[D]. Chengdu:University of Electronic Science and Technology of China,2015:23-27.
TAO T,ZIO E,ZHAO W. A novel support vector regression method for online reliability prediction under multi-state varying operating conditions[J]. Reliability Engineering & System Safety,2018,177:35-49.
陈友东,刘茁.基于两阶段Gamma过程的工业机器人可靠性评估[J].计算机集成制造系统,2024,30(12):4477-4483.
CHEN Youdong,LIU Zhuo. Industrial robots reliability assessment based on two-stage Gamma process [J]. Computer Integrated Manufacturing Systems,2024,30(12):4477-4483.
李金峰,杨翊坤,王西峰,等.基于多元退化数据的RV减速器可靠性评估[J].机械传动,2023,47(5):82-87.
LI Jinfeng,YANG Yikun,WANG Xifeng,et al. Reliability evaluation of RV reducers based on multi degenerate data[J]. Journal of Mechanical Transmission,2023,47(5):82-87.
王卫国,孙磊. 基于Gamma过程和EM-PF参数估计的剩余寿命预测方法研究[J]. 军械工程学院学报,2015,27(2):1-7.
WANG Weiguo,SUN Lei. Residual useful life prediction research based on Gamma process and EM-PF parameter estimation algorithm[J]. Journal of Ordnance Engineering College,2015,27(2):1-7.
董浩生,杨赫然,孙兴伟,等. 基于改进神经网络算法的螺杆砂带磨削表面粗糙度预测研究[J]. 表面技术,2022,51(4):275-283.
DONG Haosheng,YANG Heran,SUN Xingwei,et al. Surface roughness prediction of screw belt grinding based on improved neural network algorithm[J]. Surface Technology,2022,51(4):275-283.
张生永,冉琰,张根保,等. 精度保持性定量评价与精度退化机理分析[J]. 机械工程学报,2022,58(7):193-213.
ZHANG Shengyong,RAN Yan,ZHANG Genbao,et al. Quantitative evaluation of accuracy retentivity and analysis of accuracy degradation mechanism[J]. Journal of Mechanical Engineering,2022,58(7):193-213.
尹勇. 工业机器人RV减速器传动精度在线监测与评级研究[D]. 徐州:中国矿业大学,2021:10-16.
YIN Yong. Research on online monitoring and rating of transmission accuracy of RV reducers for industrial robots[D]. Xuzhou:China University of Mining and Technology,2021:10-16.
李旭东. 基于深度学习的旋转部件故障诊断研究[D]. 北京:中国科学院大学(中国科学院国家空间科学中心),2021:42-46.
LI Xudong. Research on fault diagnosis of rotating components based on deep learning[D]. Beijing:National Space Science Center,Chinese Academy of Sciences,2021:42-46.
王国锋,曹增欢,冯海生,等. 基于多阶段退化建模的谐波减速器实时可靠性评估与寿命预测[J]. 天津大学学报(自然科学与工程技术版),2022,55(2):122-132.
WANG Guofeng,CAO Zenghuan,FENG Haisheng,et al. Real-time reliability evaluation and life prediction of harmonic reducer based on multistage degradation modeling[J]. Journal of Tianjin University (Science and Technology),2022,55(2):122-132.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构