浏览全部资源
扫码关注微信
1.太原科技大学 电子信息工程学院,太原 030024
2.太原科技大学 先进控制与工业智能山西省重点实验室,太原 030024
田娟,女,1984年生,山西太原人,硕士研究生,实验师;主要研究方向为智能故障诊断;juantian@tyust.edu.cn。
谢刚,男,1972年生,山西五台人,博士研究生,教授;主要研究方向为机器视觉与图像处理、智能故障诊断;xiegang@tyust.edu.cn。
纸质出版日期:2025-01-15,
收稿日期:2024-05-05,
修回日期:2024-07-21,
移动端阅览
田娟, 谢刚, 张顺, 等. 齿轮箱非平衡故障数据下的自适应诊断方法[J]. 机械传动, 2025,49(1):153-162.
TIAN JUAN, XIE GANG, ZHANG SHUN, et al. Adaptive diagnosis method based on gearbox unbalanced fault data. [J]. Journal of mechanical transmission, 2025, 49(1): 153-162.
田娟, 谢刚, 张顺, 等. 齿轮箱非平衡故障数据下的自适应诊断方法[J]. 机械传动, 2025,49(1):153-162. DOI: 10.16578/j.issn.1004.2539.2025.01.019.
TIAN JUAN, XIE GANG, ZHANG SHUN, et al. Adaptive diagnosis method based on gearbox unbalanced fault data. [J]. Journal of mechanical transmission, 2025, 49(1): 153-162. DOI: 10.16578/j.issn.1004.2539.2025.01.019.
目的
2
现有智能故障诊断方法面临的挑战包括模型训练依赖于大量标签数据、故障数据获取困难且发生概率不同、对工况影响考虑不足等。为此,提出一种变工况下自适应类间和类内非平衡故障数据的齿轮箱诊断方法。
方法
2
首先,构建门控局部连接网络,有效降低对标签数据的依赖,直接从原始数据中挖掘数据分布本征特征;其次,设计外部注意力和内部注意力并行机制,考虑变工况下类间故障和类内故障分布差异,进一步调整提取特征权重;最后,采用焦点损失函数,更加关注少数类和困难类样本,实现高质量的非平衡诊断信息挖掘。
结果
2
经齿轮箱故障试验平台6组非平衡数据测试,验证了所提方法自适应识别非平衡故障数据的有效性和优越性。
Objective
2
The existing intelligent fault diagnosis methods face challenges
such as model training relying on a large amount of labeled data
difficulty in obtaining fault data with different occurrence probabilities
and insufficient consideration of the impact of operating conditions. To address these challenges
a novel gearbox diagnosis method for adaptive inter-class and intra-class unbalanced fault data under varying working conditions was proposed.
Methods
2
Firstly
a gated local connection network was utilized to reduce the reliance on the labeled data and extract intrinsic features directly from the original data. Secondly
a parallel mechanism of external and internal attention was designed to consider the distribution differences among inter-class and intra-class faults under different working conditions
adjusting the weights of extracted features accordingly. Finally
focal loss function was employed to focus on minority and challenging samples
enabling high-quality mining of unbalanced diagnostic information.
Results
2
The proposed method is demonstrated by six unbalanced gearbox datasets
which shows great effectiveness and superiority in identifying unbalanced fault data.
故障诊断类间和类内非平衡门控局部连接网络注意力并行机制焦点损失
Fault diagnosisInter-class and intra-class imbalancesGated local connection networkAttention parallel mechanismFocal loss
雷亚国,何正嘉,林京,等. 行星齿轮箱故障诊断技术的研究进展[J]. 机械工程学报,2011,47(19):59-67.
LEI Yaguo,HE Zhengjia,LIN Jing,et al. Research advances of fault diagnosis technique for planetary gearboxes[J]. Journal of Mechanical Engineering,2011,47(19):59-67.
JIANG F,LIN W Q,WU Z Q,et al. Fault diagnosis of gearbox driven by vibration response mechanism and enhanced unsupervised domain adaptation[J]. Advanced Engineering Informatics,2024,61:102460.
LI X,ZHANG W. Deep learning-based partial domain adaptation method on intelligent machinery fault diagnostics[J]. IEEE Transactions on Industrial Electronics,2021,68(5):4351-4361.
CHEN Z Y,GRYLLIAS K,LI W H. Mechanical fault diagnosis using convolutional neural networks and extreme learning machine[J]. Mechanical Systems and Signal Processing,2019,133:106272.
何财林,费国华,朱坚,等. 基于深度特征选取的旋转机械跨域故障诊断[J]. 机电工程,2022,39(10):1345-1355.
HE Cailin,FEI Guohua,ZHU Jian,et al. Cross-domain fault diagnosis of rotating machinery based on deep features selection[J]. Journal of Mechanical & Electrical Engineering,2022,39(10):1345-1355.
杜浩飞,张超,李建军. 基于SENet-ResNext-LSTM的风机轴承故障诊断[J]. 机械强度,2023,45(6):1271-1279.
DU Haofei,ZHANG Chao,LI Jianjun. Fault diagnosis of wind turbine bearing based on SENet-ResNext-LSTM[J]. Journal of Mechanical Strength,2023,45(6):1271-1279.
王德成,林辉. 一种SVM不平衡分类方法及在故障诊断的应用[J]. 电机与控制学报,2012,16(9):48-52.
WANG Decheng,LIN Hui. Imbalanced pattern classification method based on support vector machine and its application on fault diagnosis[J]. Electric Machines and Control,2012,16(9):48-52.
罗毅,郝伟琪. 一种基于SMOTE的CNN风电机组故障诊断方法[J]. 计算机仿真,2024,41(2):91-94.
LUO Yi,HAO Weiqi. A method for wind turbine fault diagnosis of CNN based on SMOTE[J]. Computer Simulation,2024,41(2):91-94.
李佰霖,陈昱锐,褚凡武,等. 基于混合采样和CAWOA-BP的变压器故障诊断[J]. 水电能源科学,2024,42(3):216-220.
LI Bailin,CHEN Yurui,CHU Fanwu,et al. Transformer fault diagnosis based on hybrid sampling and CAWOA-BP[J]. Water Resources and Power,2024,42(3):216-220.
李可,何坚光,宿磊,等. 基于CAE-GAN的滚动轴承故障诊断方法[J]. 振动与冲击,2023,42(23):65-70.
LI Ke,HE Jianguang,SU Lei,et al. Fault diagnosis method for rolling bearing based on CAE-GAN[J]. Journal of Vibration and Shock,2023,42(23):65-70.
黎政,吴胜利,邢文婷,等. 基于MGAN和CNN的齿轮故障智能诊断方法[J]. 机械传动,2022,46(7):144-150.
LI Zheng,WU Shengli,XING Wenting,et al. Intelligent diagnosis method of gear faults based on MGAN and CNN[J]. Journal of Mechanical Transmission,2022,46(7):144-150.
黄颖琦,陈红梅. 基于代价敏感卷积神经网络的非平衡问题混合方法[J]. 计算机科学,2021,48(9):77-85.
HUANG Yingqi,CHEN Hongmei. Cost-sensitive convolutional neural network based hybrid method for imbalanced data classification[J]. Computer Science,2021,48(9):77-85.
DUAN A,GUO L,GAO H L,et al. Deep focus parallel convolutional neural network for imbalanced classification of machinery fault diagnostics[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(11):8680-8689.
RAO M,ZUO M J,TIAN Z G. Speed adaptive gate:a novel auxiliary branch for enhancing deep learning-based rotating machinery fault classification under varying speed conditions[J]. Measurement,2023,217:113016.
VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York:Curran Associates Inc.,2017:6000-6010.
GUO M H,LIU Z N,MU T J,et al. Beyond self-attention:external attention using two linear layers for visual tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(5):5436-5447.
LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision (ICCV). New York:IEEE,2017:2999-3007.
ZEILER M D,FERGUS R. Visualizing and understanding convolutional networks[C]//Computer Vision-ECCV 2014.Cham:Springer,2014:818-833.
HE Z Y,SHAO H D,CHENG J S,et al. Kernel flexible and displaceable convex hull based tensor machine for gearbox fault intelligent diagnosis with multi-source signals[J]. Measurement,2020,163:107965.
陈闻鹤,程龙生,常志朋,等. 改进BiLSTM-GRU-DMD的风机叶片结冰故障检测与状态评估模型[J]. 工业工程与管理,2023,28(5):108-118.
CHEN Wenhe,CHENG Longsheng,CHANG Zhipeng,et al. Detection and status assessment of wind turbine blade icing using improved BiLSTM-GRU-DMD[J]. Industrial Engineering and Management,2023,28(5):108-118.
伍济钢,文港,杨康. 改进注意力机制的航空发动机试验转子系统智能故障诊断[J]. 振动与冲击,2024,43(4):261-269.
WU Jigang,WEN Gang,YANG Kang. Improved attention mechanism for intelligent fault diagnosis of experimental rotor systems in aero engines[J]. Journal of Vibration and Shock,2024,43(4):261-269.
0
浏览量
7
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构