浏览全部资源
扫码关注微信
1.华东交通大学 机电与车辆工程学院,南昌 330013
2.捷姆轴承集团有限公司,衢州 324200
3.中国科学院合肥物质科学研究院 智能机械研究所,合肥 230031
刘敏,男,1990年生,江西吉安人,博士,副教授;主要研究方向为机构学、故障诊断;lmin2016@foxmail.com。
占金青(通信作者),男,1979年生,江西九江人,博士,教授;研究方向为柔顺机构拓扑优化;zhan_jq@126.com。
收稿日期:2025-06-04,
修回日期:2025-08-17,
网络出版日期:2025-09-19,
移动端阅览
刘敏,杨清清,涂君焕,等.基于CEEMD-MOMEDA-FCM的圆锥滚子轴承故障诊断[J].机械传动,XXXX,XX(XX):1-10.
LIU Min,YANG Qingqing,TU Junhuan,et al.Fault diagnosis of tapered roller bearing based on CEEMD-MOMEDA-FCM[J].Journal of Mechanical Transmission,XXXX,XX(XX):1-10.
目的
2
圆锥滚子轴承是工业设备中常见的关键部件,其故障会导致设备的停机和生产事故。准确并及时地进行圆锥滚子轴承故障诊断,对设备的安全运行和维护具有重要意义。为此,采用互补集合经验模态分解(Complementary Ensemble Empirical Mode Decomposition
CEEMD)、多点最优最小熵解卷积调整(Multipoint Optimal Minimum Entropy Deconvolution Adjustment
MOMEDA)和模糊C-均值(Fuzzy C-Means
FCM)相结合的方法,对圆锥滚子轴承故障诊断进行了研究。
方法
2
首先,采集圆锥滚子轴承在正常工作和故障状态下的振动信号,并利用CEEMD-MOMEDA方法对信号进行分解,提取其时频特征;其次,应用FCM算法对时频特征进行聚类,以实现对圆锥滚子轴承故障状态的判定。
结果
2
试验结果表明,该方法可对大量的圆锥滚子轴承故障数据进行准确的诊断分析,提高了工作效率,验证了该方法的有效性和优越性。
Objective
2
Tapered roller bearings are common key components in industrial equipment
and their failures can lead to equipment downtime and production accidents. Accurate and timely fault diagnosis of tapered roller bearings is of great significance to the safe operation and maintenance of equipment. Therefore
the fault diagnosis of tapered roller bearings was studied by combining complementary ensemble empirical mode decomposition (CEEMD)
multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) and fuzzy C-means (FCM).
Methods
2
First
the vibration signals of tapered roller bearings in normal working and faulty states were collected
and the CEEMD-MOMEDA method is used to decompose the signals and extract their time-frequency features; Then
the FCM algorithm was used to cluster the time-frequency features to determine the fault state of the tapered roller bearing.
Results
2
The test results show that this method can accurately diagnose and analyze a large amount of tapered roller bearing fault data
improve work efficiency
and verify the effectiveness and superiority of this method.
李长健 , 向立明 , 刘永强 , 等 . 基于ADAMS的高速机车双列圆锥滚子轴承典型故障仿真分析 [J]. 轴承 , 2018 ( 6 ): 55 - 59 .
LI Changjian , XIANG Liming , LIU Yongqiang , et al . Simulation analysis on double row tapered roller bearings with typical faults in high-speed locomotive based on ADAMS [J]. Bearing , 2018 ( 6 ): 55 - 59 .
戴浩楠 , 李伦 , 薛玉君 , 等 . 大功率风电机组增速箱轴承强化试验研究 [J]. 机械传动 , 2024 , 48 ( 11 ): 148 - 154 .
DAI Haonan , LI Lun , XUE Yujun , et al . Study of enhancement test on bearings of high power wind turbine gearboxes [J]. Journal of Mechanical Transmission , 2024 , 48 ( 11 ): 148 - 154 .
杨磊 . 车辆驱动桥主减速器双列圆锥滚子轴承力学特性分析 [D]. 大连 : 大连工业大学 , 2020 : 1 - 20 .
YANG Lei . Analysis of mechanical characteristics of double row tapered roller bearing for main reducer of vehicle drive axle [D]. Dalian : Dalian Polytechnic University , 2020 : 1 - 20 .
汪凯 , 江胜飞 , 胡波 , 等 . 轴承间隙对轴承振动影响的理论模型与试验研究 [J]. 机械科学与技术 , 2023 , 42 ( 1 ): 67 - 74 .
WANG Kai , JIANG Shengfei , HU Bo , et al . Theoretical model and experimental study on influence of bearing inner clearance on bearing vibration [J]. Mechanical Science and Technology for Aerospace Engineering , 2023 , 42 ( 1 ): 67 - 74 .
LIN H C , YE Y-C . Reviews of bearing vibration measurement using fast Fourier transform and enhanced fast Fourier transform algorithms [J]. Advances in Mechanical Engineering , 2019 , 11 : 1687814018816751 .
夏新涛 , 刘斌 , 姜松俊 , 等 . 基于乏信息的圆锥滚子轴承振动影响因素分析 [J]. 机械传动 , 2018 , 42 ( 2 ): 114 - 119 .
XIA Xintao , LIU Bin , JIANG Songjun , et al . Analysis of influencing factor on tapered roller bearing vibration based on poor information [J]. Journal of Mechanical Transmission , 2018 , 42 ( 2 ): 114 - 119 .
李梦圆 , 杨建伟 , 姚德臣 , 等 . 基于鲸鱼优化算法的自适应共振解调轴承故障诊断方法 [J]. 科学技术与工程 , 2023 , 23 ( 9 ): 3723 - 3729 .
LI Mengyuan , YANG Jianwei , YAO Dechen , et al . Fault diagnosis method of adaptive resonance demodulation bearing based on whale optimization algorithm [J]. Science Technology and Engineering , 2023 , 23 ( 9 ): 3723 - 3729 .
肖俊青 , 金江涛 , 李春 , 等 . 基于CEEMDAN模糊熵CNN轴承故障诊断研究 [J]. 机械强度 , 2023 , 45 ( 1 ): 26 - 33 .
XIAO Junqing , JIN Jiangtao , LI Chun , et al . Research on bearing fault diagnosis based on ceemdan fuzzy entropy and convolutional neural network [J]. Journal of Mechanical Strength , 2023 , 45 ( 1 ): 26 - 33 .
张子轩 , 高丙朋 , 魏晓鹏 . 基于随机共振与CEEMD的滚动轴承微弱故障诊断 [J]. 组合机床与自动化加工技术 , 2023 ( 4 ): 46 - 49 .
ZHANG Zixuan , GAO Bingpeng , WEI Xiaopeng . Weak fault diagnosis of rolling bearings based on stochastic resonance and CEEMD [J]. Modular Machine Tool & Automatic Manufacturing Technique , 2023 ( 4 ): 46 - 49 .
曹亚磊 , 杜应军 , 韦广 , 等 . SGMD-MOMEDA滚动轴承故障特征提取方法研究 [J]. 机械强度 , 2022 , 44 ( 6 ): 1279 - 1285 .
CAO Yalei , DU Yingjun , WEI Guang , et al . Research on rolling bearing fault feature extraction method with SGMD-MOMEDA [J]. Journal of Mechanical Strength , 2022 , 44 ( 6 ): 1279 - 1285 .
周胜利 . 基于ARX-FCM的盾构机液压推进系统故障诊断方法 [J]. 液压与气动 , 2023 , 47 ( 4 ): 165 - 174 .
ZHOU Shengli . Fault diagnosis method of shield machine hydraulic propulsion system based on ARX-FCM [J]. Chinese Hydraulics & Pneumatics , 2023 , 47 ( 4 ): 165 - 174 .
于元滐 , 杨光永 , 晏婷 , 等 . 基于CEEMD和MOMEDA的滚动轴承故障提取 [J]. 电子测量技术 , 2021 , 44 ( 22 ): 96 - 101 .
YU Yuanjie , YANG Guangyong , YAN Ting , et al . Fault extraction of rolleing bearing based on CEEMD and MOMEDA [J]. Electronic Measurement Technology , 2021 , 44 ( 22 ): 96 - 101 .
LI J , LIU C , ZENG Z F , et al . GPR signal denoising and target extraction with the CEEMD method [J]. IEEE Geoscience and Remote Sensing Letters , 2015 , 12 ( 8 ): 1615 - 1619 .
ATHISAYAM A , KONDAL M . A multi-stage diagnosis method using CEEMD,ABC,and ANN for identifying compound gear-bearing faults [J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science , 2023 , 237 ( 8 ): 2030 - 2045 .
孙国栋 , 王俊豪 , 徐昀 , 等 . CEEMD-WVD多尺度时频图像的滚动轴承故障诊断 [J]. 机械科学与技术 , 2020 , 39 ( 5 ): 688 - 694 .
SUN Guodong , WANG Junhao , XU Yun , et al . Rolling bearing fault diagnosis based on CEEMD-WVD multi-scale time-frequency image [J]. Mechanical Science and Technology for Aerospace Engineering , 2020 , 39 ( 5 ): 688 - 694 .
MENG Z , ZHANG Y , ZHU B , et al . Research on rolling bearing fault diagnosis method based on ARMA and optimized MOMEDA [J]. Measurement , 2022 , 189 : 110465 .
WANG X Y , MA J . Weak fault feature extraction of rolling bearing based on SVMD and improved MOMEDA [J]. Mathematical Problems in Engineering , 2021 , 2021 ( 1 ): 9966078 .
梁富旺 , 孙虎儿 , 刘柯欣 . 基于SK-MOMEDA的滚动轴承微弱故障特征提取 [J]. 机械传动 , 2021 , 45 ( 2 ): 157 - 162 .
LIANG Fuwang , SUN Huer , LIU Kexin . Feature extraction of weak fault for rolling bearing based on spectral kurtosis and MOMEDA [J]. Journal of Mechanical Transmission , 2021 , 45 ( 2 ): 157 - 162 .
XING T T , ZENG Y , MENG Z , et al . A fault diagnosis method of rolling bearing based on VMD Tsallis entropy and FCM clustering [J]. Multimedia Tools and Applications , 2020 , 79 ( 39 ): 30069 - 30085 .
唐益明 , 陈仁好 , 李冰 . 面向模糊C均值算法的MAME聚类有效性指标 [J]. 智能系统学报 , 2023 , 18 ( 5 ): 945 - 956 .
TANG Yiming , CHEN Renhao , LI Bing . A clustering validity index called MAME for the fuzzy c-means algorithm [J]. CAAI Transactions on Intelligent Systems , 2023 , 18 ( 5 ): 945 - 956 .
MCDONALD G L , ZHAO Q . Multipoint optimal minimum entropy deconvolution and convolution fix:application to vibration fault detection [J]. Mechanical Systems and Signal Processing , 2017 , 82 : 461 - 477 .
YEH J R , SHIEH J S , HUANG N E . Complementary ensemble empirical mode decomposition:a novel noise enhanced data analysis method [J]. Advances in Adaptive Data Analysis , 2010 , 2 ( 2 ): 135 - 156 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构