
浏览全部资源
扫码关注微信
青岛职业技术学院 海尔学院(机电学院),青岛 266555
李伟,男,1989年生,湖北孝感人,硕士,讲师;主要研究方向为并联机构;liw@qtc.edu.cn。
收稿日期:2025-01-10,
网络出版日期:2025-09-09,
移动端阅览
李伟,王晖.基于末端旋量描述坐标系“并+串”混联机器人雅可比矩阵的建立[J].机械传动,XXXX,XX(XX):1-13.
LI Wei,WANG Hui.Jacobian establishment for“parallel + serial” hybrid robots based on end-effector screw describing coordinate[J].Journal of Mechanical Transmission,XXXX,XX(XX):1-13.
目的
2
混联机器人能够结合串/并联机器人的优点,已成为机器人领域的重要研究方向之一,雅可比矩阵的建立是机器人理论研究与工程应用相结合的关键。但以机器人基坐标系为参考,应用旋量理论得到的速度雅可比矩阵,不能直接获得末端操作点的速度,且得到的力雅可比不能直接使用末端受到的力用于静力分析。为解决此问题,提出一种基于末端旋量描述坐标系建立“并+串”混联机器人雅可比矩阵的新方法。
方法
2
首先,基于旋量理论,描述了末端旋量描述坐标系的概念,分析了在该坐标系下应用旋量理论进行机器人速度、静力建模的优势;其次,应用末端旋量描述坐标系和旋量理论,提出了建立“并+串”混联机器人的速度及力雅可比矩阵的一般方法;然后,以典型国产“并+串”混联机器人TriMule为例,应用末端旋量描述坐标系,基于旋量互易积理论,建立了其速度及力雅可比矩阵的理论推导模型,并与传统方法相对比,验证了理论推导模型的正确性。最后,基于TriMule具体的结构特点,求解位置方程组,并结合指数积公式,研究了其位置正解。基于一组具体的结构参数和驱动参数,得到了其速度雅可比矩阵及力雅可比矩阵的数值算例,并与基坐标系为参考建立雅可比矩阵求得的末端速度进行对比,验证了数值算例的正确性。
结果
2
基于末端旋量描述坐标系建立的“并+串”混联机器人雅可比矩阵可直接得到关节驱动速度到末端操作点速度的映射,且转置矩阵可直接获得力雅可比矩阵。与传统方法相比,所提新方法物理意义更明显、更方便实时速度解算及静力学分析。
Objective
2
Hybrid robots that combine the advantages of serial/parallel robots have become one of the important research directions in the field of robots. The establishment of the Jacobian matrix is the key to the combination of theoretical research and engineering application in robot theory. However
when using the robot base coordinate system as the reference
the velocity Jacobian matrix obtained by applying the screw theory cannot directly obtain the velocity of the end effector point
and the force Jacobian obtained cannot be directly used to conduct static analysis based on the force received by the end effector. To solve this problem
a new method for establishing the Jacobian matrix of "parallel + serial" hybrid robots based on the end effector screw description coordinate system is proposed.
Methods
2
First
based on the screw theory
the concept of end-effector screw describing coordinate systems is described
and the advantages of applying screw theory for velocity and static force modeling in this coordinate system are analyzed. Secondly
a general approach for establishing the velocity and force Jacobian matrix of the“parallel + serial” hybrid robot is proposed utilizing the end-effector screw describing coordinate and applying screw theory. Then
taking the typical domestic "parallel+serie" hybrid robot TriMule as an example
by employing the end-effector screw describing coordinate
and based on the screw reciprocal product theory
a theoretical derivation model for its velocity and force Jacobian matrix was established. and compared with the traditional methods to verify the correctness of the theoretical derivation model.
Results
2
The Jacobian matrix of the "parallel + serial" hybrid robot established based on the end-effector screw description coordinate system can directly obtain the mapping from the joint drive speed to the end operation point speed
and the transposed matrix can directly obtain the force Jacobian matrix. Compared with the traditional method
the proposed new method has more obvious physical meaning
and is more convenient for real-time speed calculation and static analysis.
胡波 , 赵金君 , 刘建正 , 等 . (3-RPS)+(2-RCR)混联机构末端约束分析 [J]. 中国机械工程 , 2024 , 35 ( 9 ): 1548 - 1558 .
HU Bo , ZHAO Jinjun , LIU Jianzheng , et al . Terminal constraint analysis of(3-RPS)+(2-RCR)H y brid mechanisms [J]. China Mechanical Engineering , 2024 , 35 ( 9 ): 1548 - 1558 .
Starrag . ECOSPEED系列5轴联动hpc加工中心 [EB/OL].[ 2024-11-29 ]. https://www.starrag.com/zh-cn/product-range/11 https://www.starrag.com/zh-cn/product-range/11
王玉茹 , 张大卫 , 黄田 . Tricept并联机器人的运动学设计理论浅析 [J]. 天津大学学报(自然科学与工程技术版) , 2002 , 35 ( 3 ): 376 - 379 .
WANG Yuru , ZHANG Dawei , HUANG Tian . Kinematic analysis of tricept parallel robotic manipulator [J]. Journal of Tianjin University(Science and Technology) , 2002 , 35 ( 3 ): 376 - 379 .
BI Z M , JIN Y . Kinematic modeling of Exechon parallel kinematic machine [J]. Robotics and Computer Integrated Manufacturing , 2011 , 27 ( 1 ): 186 - 193 .
董成林 , 李锦涛 , 刘海涛 , 等 . TriMule与Exechon机器人的切向运动传递特性同性条件及运动学性能分析 [J]. 机械工程学报 , 2021 , 57 ( 15 ): 23 - 32 .
DONG Chenglin , LI Jintao , LIU Haitao , et al . Isotropy of tangential motion transmissibility and kinematic performance analysis of TriMule and Exechon robots [J]. Journal of Mechanical Engineering , 2021 , 57 ( 15 ): 23 - 32 .
刘海涛 , 潘巧 , 尹福文 , 等 . TriMule混联机器人的精度综合 [J]. 天津大学学报(自然科学与工程技术版) , 2019 , 52 ( 12 ): 1245 - 1254 .
LIU Haitao , PAN Qiao , YIN Fuwen , et al . Accuracy synthesis of the TriMule hybrid robot [J]. Journal of Tianjin University:Science and Technology , 2019 , 52 ( 12 ): 1245 - 1254 .
董成林 , 岳巍 , 刘海涛 , 等 . TriMule与Tricept机器人刚度解析与比对 [J]. 机械工程学报 , 2021 , 57 ( 19 ): 30 - 38 .
DONG Chenglin , YUE Wei , LIU Haitao , et al . Stiffness analysis and comparison of TriMule and Tricept robots [J]. Journal of Mechanical Engineering , 2021 , 57 ( 19 ): 30 - 38 .
刘辛军 , 谢福贵 , 杨迪 , 等 . 现代科技创新研究模式探讨 [J]. 机械工程学报 , 2022 , 58 ( 11 ): 1 - 10 .
LIU Xinjun , XIE Fugui , YANG Di , et al . Discussion on research mode of advanced scientific and technological innovation [J]. Journal of Mechanical Engineering , 2022 , 58 ( 11 ): 1 - 10 .
于靖军 , 刘辛军 , 丁希仑 , 等 . 机器人机构学的数学基础 [M]. 北京 : 机械工业出版社 , 2008 : 309 - 341 .
YU Jingjun , LIU Xinjun , DING Xilun , et al . Mathematical basis of robot mechanism [M]. Beijing : China Machine Press , 2008 : 309 - 341 .
熊有伦 . 机器人学:建模、控制与视觉 [M]. 2版 . 武汉 : 华中科技大学出版社 , 2020 : 131 - 145 .
XIONG Youlun . Robotics:modeling,control and vision [M]. 2nd ed . Wuhan : Huazhong University of Science and Technology Press , 2020 : 131 - 145 .
JOHN J. CRAIG . 机器人学导论 [M]. 贠超,等译. 北京 : 机械工业出版社 , 2006 : 121 - 124 .
JOHNJ . CRAIG . Introduction to robotics mechanics and control [M]. YUAN Chao,et al,Jr,Beijing : China Machine Press , 2006 : 117 - 124 .
LYNCH K M , PARK F C . Modern robotics [M]. Cambridge,UK : Cambridge University Press , 2017 : 190 - 191 .
常振 , 王成博 , 王高峰 , 等 . 新型球面并联机构运动学分析及尺度综合 [J]. 机械传动 , 2022 , 46 ( 6 ): 45 - 51 .
CHANG Zhen , WANG Chengbo , WANG Gaofeng , et al . Kinematics analysis and scale synthesis of a novel spherical parallel mechanism [J]. Journal of Mechanical Transmission , 2022 , 46 ( 6 ): 45 - 51 .
胡波 , 宋春晓 , 张庆玲 , 等 . 2(2-UPR+SPR)串并联机构雅可比矩阵的建立 [J]. 中国机械工程 , 2015 , 26 ( 7 ): 853 - 858 .
HU Bo , SONG Chunxiao , ZHANG Qingling , et al . Jacobian matrix establishment of 2(2-UPR+SPR) serial-parallel manipulator [J]. China Mechanical Engineering , 2015 , 26 ( 7 ): 853 - 858 .
张付祥 , 张诺 , 刘再 . 圆钢端面贴标混联机器人雅可比矩阵求解 [J]. 机床与液压 , 2019 , 47 ( 9 ): 33 - 36 .
ZHANG Fuxiang , ZHANG Nuo , LIU Zai . Solution of Jacobian matrix of the labeling hybrid robot for round steel end surfaces [J]. Machine Tool & Hydraulics , 2019 , 47 ( 9 ): 33 - 36 .
戴建生 . 机构学与机器人学的几何基础与旋量代数 [M]. 北京 : 高等教育出版社 , 2014 : 63 - 65 .
DAI Jiansheng . Geometrical foundations and screw algebra for mechanisms and robotics [M]. Beijing : Higher Education Press , 2014 : 63 - 65 .
黄田 , 李曚 , 吴孟丽 , 等 . 可重构PKM模块的选型原则——理论与实践 [J]. 机械工程学报 , 2005 , 41 ( 8 ): 36 - 41 .
HUANG Tian , LI Meng , WU Mengli , et al . Criteria for conceptual design of reconfigurable pkm modules-theory and application [J]. Chinese Journal of Mechanical Engineering , 2005 , 41 ( 8 ): 36 - 41 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621