浏览全部资源
扫码关注微信
山东建筑大学 机电工程学院,济南 250101
王学成,男,2001年生,山东高唐人,硕士研究生;主要研究方向为微位移技术;2831166589@qq.com。
收稿日期:2025-04-11,
修回日期:2025-05-23,
网络出版日期:2025-08-20,
移动端阅览
王学成,张士军,崔禧龙.基于柔性铰链的二级放大机构[J].机械传动,XXXX,XX(XX):1-7.
WANG Xuecheng,ZHANG Shijun,CUI Xilong.Two-stage amplification mechanism based on flexible hinge[J].Journal of Mechanical Transmission,XXXX,XX(XX):1-7.
目的
2
为解决微位移平台大行程设计中传统转动副存在的摩擦与间隙问题,提出一种新型二级复合放大机构设计方案,旨在通过结构创新实现高精度、大行程的位移放大效果。
方法
2
基于材料力学理论建立静力学模型,采用柔性铰链杠杆放大机构与桥式放大机构相结合的二级放大结构,以压电陶瓷为驱动源,通过Matlab软件建立参数优化模型;系统分析关键结构参数对放大比和输入刚度的影响规律,确定最优参数组合,采用有限元分析方法对优化后的结构进行多物理场仿真验证。
结果
2
优化后,机构实现了13.1倍位移放大比,固有频率达92.3 Hz;理论计算与仿真结果的最大误差分别为2.4%、3.5%,证明了结构的可行性。
Objective
2
A novel two-stage compound amplification mechanism design scheme was proposed in this study to address the friction and clearance issues inherent in traditional revolute pairs within the large stroke design of micro-displacement platforms.The aim is to achieve high-precision and significant stroke displacement amplification through structural innovation.
Methods
2
Utilizing the theory of material mechanics
a static model was established. A two-stage compound amplification structure that integrates a flexible hinge lever amplification mechanics of materials with a bridge amplification mechanism was employed. Piezoelectric ceramics serve as the driving source
and a parameter optimization model was developed using Matlab software. The impact of key structural parameters on both the amplification ratio and input stiffness was systematically analyzed to identify the optimal parameter combination. The optimized structure underwent validation through multi-physical field simulation via finite element analysis.
Results
2
Following optimization
the mechanism attains an impressive displacement amplification ratio of 13.1 times
with its natural frequency reaching 92.3 Hz. The maximum discrepancies between theoretical calculations and simulation results are recorded at 2.4% and 3.5%
respectively
thereby demonstrating the feasibility of this structural design.
林苗 , 孟刚 , 居勇健 , 等 . 大行程解耦三平动微定位平台的设计与优化 [J]. 北京航空航天大学学报 , 2022 , 48 ( 7 ): 1252 - 1262 .
LIN Miao , MENG Gang , JU Yongjian , et al . Design and optimization of large-stroke decoupled three-translational micro-positioning platform [J]. Journal of Beijing University of Aeronautics and Astronautics , 2022 , 48 ( 7 ): 1252 - 1262 .
杜健 , 祝锡晶 , 李婧 . 基于压电陶瓷驱动的二维精密定位平台的设计及分析 [J]. 工程设计学报 , 2025 , 32 ( 2 ): 199 - 207 .
DU Jian , ZHU Xijing , LI Jing . Design and analysis of two-dimensional precision positioning platform driven by piezoelectric ceramics [J]. China Industrial Economics , 2025 , 32 ( 2 ): 199 - 207 .
GUO Z , TIAN Y , LIU X , et al . An inverse Prandtl–Ishlinskii model based decoupling control methodology for a 3-DOF flexure-based mechanism [J]. Sensors and Actuators A:Physical , 2015 , 230 : 52 - 62 .
XIE Y L , LI Y M , CHEUNG C F , et al . Design and analysis of a novel compact XYZ parallel precision positioning stage [J]. Microsystem Technologies , 2021 , 27 ( 5 ): 1925 - 1932 .
黄卫清 , 史小庆 , 王寅 . 菱形压电微位移放大机构的设计 [J]. 光学 精密工程 , 2015 , 23 ( 3 ): 803 - 809 .
HUANG Weiqing , SHI Xiaoqing , WANG Yin . Design of diamond piezoelectric micro displacement amplification mechanism [J]. Optics and Precision Engineering , 2015 , 23 ( 3 ): 803 - 809 .
赵智全 , 祝锡晶 , 李婧 , 等 . 三维桥式放大机构的柔性微定位平台的研究与改进 [J]. 机械传动 , 2024 , 48 ( 9 ): 152 - 159 .
ZHAO Zhiquan , ZHU Xijing , LI Jing , et al . Research and improvement of flexible micro-positioning platform with a three-dimensional bridge-type amplification mechanism [J]. Journal of Mechanical Transmission , 2024 , 48 ( 9 ): 152 - 159 .
CHEN F X , DONG W , YANG M , et al . A PZT actuated 6-DOF positioning system for space optics alignment [J]. IEEE/ASME Transactions on Mechatronics , 2019 , 24 ( 6 ): 2827 - 2838 .
QIN Y D , SHIRINZADEH B , TIAN Y L , et al . Design and computational optimization of a decoupled 2-DOF monolithic mechanism [J]. IEEE/ASME Transactions on Mechatronics , 2013 , 19 ( 3 ): 872 - 881 .
KIM J H , KIM S H , KWAK Y K . Development of a piezoelectric actuator using a three-dimensional bridge-type hinge mechanism [J]. Review of Scientific Instruments , 2003 , 74 ( 5 ): 2918 - 2924 .
吴彤 , 杨依领 , 吴高华 , 等 . 二自由度大行程无耦合压电粘滑定位平台 [J]. 光学 精密工程 , 2024 , 32 ( 1 ): 62 - 72 .
WU Tong , YANG Yiling , WU Gaohua , et al . Two-DOF piezoelectric stick-slip positioning platform with large strokes and no coupling [J]. Optics and Precision Engineering , 2024 , 32 ( 1 ): 62 - 72 .
XU Q S , LI Y M . Analytical modeling,optimization and testing of a compound bridge-type compliant displacement amplifier [J]. Mechanism and Machine Theory , 2011 , 46 ( 2 ): 183 - 200 .
LI Z , SU Z R , WANG H B , et al . Design and locomotion study of two-DOF actuator driven by piezoelectric–electromagnetic hybrid mode [J]. Sensors , 2022 , 22 ( 10 ): 3739 .
LING M X , ZHANG C , CHEN L G . Optimized design of a compact multi-stage displacement amplification mechanism with enhanced efficiency [J]. Precision Engineering , 2022 , 77 : 77 - 89 .
郝云锋 , 王占英 , 马宏 , 等 . 多级嵌套菱形位移放大机构的设计与分析 [J]. 河北建筑工程学院学报 , 2022 , 40 ( 2 ): 186 - 189 .
HAO Yunfeng , WANG Zhanying , MA Hong , et al . Design and analysis of multi-stage nested rhombic displacement amplifying mechanism [J]. Journal of Hebei Institute of Architecture and Civil Engineering , 2022 , 40 ( 2 ): 186 - 189 .
Fan Wei , Jin Huaxue , Fu Yuchen , et al . A type of symmetrical differential lever displacement amplification mechanism [J]. Mechanics & Industry , 2021 , 22 : 5 .
DONG W , CHEN F X , GAO F T , et al . Development and analysis of a bridge-lever-type displacement amplifier based on hybrid flexure hinges [J]. Precision Engineering , 2018 , 54 : 171 - 181 .
KOSEKI Y , TANIKAWA T , KOYACHI N , et al . Kinematic analysis of a translational 3-d.o.f. micro-parallel mechanism using the matrix method [J]. Advanced Robotics , 2002 , 16 ( 3 ): 251 - 264 .
ZHANG Q , ZHAO J G , PENG Y , et al . A novel amplification ratio model of a decoupled XY precision positioning stage combined with elastic beam theory and Castigliano’s second theorem considering the exact loading force [J]. Mechanical Systems and Signal Processing , 2020 , 136 : 106473 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构