浏览全部资源
扫码关注微信
江苏大学 机械工程学院,镇江 212013
陈超,男,1989年生,江苏镇江人,博士,讲师;主要研究方向为信号处理、机械系统状态监测与智能故障诊断;chenchao@ujs.edu.cn。
韩丽玲(通信作者),女,1991年生,江苏镇江人,博士,讲师;主要研究方向为故障诊断算法和智能信息处理;llhan@ujs.edu.cn。
收稿日期:2024-08-07,
网络出版日期:2025-05-13,
移动端阅览
陈超,杨晨皓,许皓森,等.基于改进APSMOTE-WKMFA的空间轴承故障分类方法[J].机械传动,XXXX,XX(XX):1-11.
CHEN Chao,YANG Chenhao,XU Haosen,et al.A spatial bearing fault classification method based on improved APSMOTE-WKMFA[J].Journal of Mechanical Transmission,XXXX,XX(XX):1-11.
目的
2
针对空间轴承时域特征分类准确率低的问题,结合时域指标和小波包分解算法获取空间轴承的时频分布特征;采用极大重叠离散小波包变换(Maximal Overlap Discrete Wavelet Packet Transform
MODWPT)获取时间序列在不同频带上的能量分布并作为故障特征,解决了传统时域特征难以有效区分空间轴承运行状态的问题;针对类别不平衡情况下模型对少数类故障样本分类性能不佳的问题,提出基于改进近邻传播聚类合成少数类过采样技术-小波函数的核边界Fisher分析(Affinity Propagation Synthetic Minority Oversampling Technique-Wavelet Kernel Marginal Fisher Analysis
APSMOTE-WKMFA)的空间轴承故障分类方法。
方法
2
首先,使用测地线距离作为近邻传播聚类算法的相似性度量,在筛选后的子簇中使用合成少数类过采样技术(Synthetic Minority Oversampling Technique
SMOTE)生成样本至类别平衡;然后,使用基于小波函数的核边界Fisher分析进行投影映射;最后,使用
k
近邻分类算法对变换后的低维特征训练分类模型,并使用哈尔滨工业大学航空发动机的空间轴承数据集进行了试验验证。
结果
2
相较于欧氏距离,测地线距离能更加准确地反映空间轴承数据间的相似度,而且经过投影映射后的数据类内聚合度和类间分离度得到增强,提高了故障的可分性。试验结果表明,在同等条件下,改进APSMOTE-WKMFA的分类准确率相较于类别不平衡数据、k-means SMOTE、APSMOTE、改进APSMOTE和改进APSMOTE-LPP平均提升10.2百分点,实现了对类别不平衡及变转速工况下空间轴承故障的有效诊断。
Objective
2
Aiming at the problem of low accuracy of classification of time domain features of spatial bearings
time domain indicators and wavelet packet decomposition algorithms are combined to obtain the time-frequency distribution features of spatial bearings. The maximal overlap discrete wavelet packet transform (MODWPT) is used to obtain the energy distribution of time series in different frequency bands as fault features
which solves the problem that traditional time domain features are difficult to effectively differentiate the operating state of spatial bearings. Aiming at the problem of poor classification performance of a model for a few classes of fault samples in the case of category imbalance
the spatial bearing fault classification method based on an improved affinity propagation synthetic minority oversampling technique-wavelet kernel marginal Fisher analysis (APSMOTE-WKMFA) was proposed.
Methods
2
Firstly
the geodesic distance was used as the similarity metric for the affinity propagation algorithm
and the synthetic minority oversampling technique (SMOTE) was used to generate samples in the filtered subclusters up to the class balance. Secondly
the projection mapping was performed using the kernel marginal Fisher analysis based on the wavelet function. Finally
the
k
-nearest neighbor classifier algorithm was used to train the classification model on the transformed low-dimensional features. Test validation was carried out using the spatial bearing dataset of Harbin Institute of Technology’s aero-engine.
Results
2
Compared with the Euclidean distance
the geodesic distance can more accurately reflect the similarity between the spatial bearing data
and the intra-class aggregation and inter-class separation of the data are enhanced after the projection mapping
which improves the separability of faults. The test results show that under the same conditions
the classification accuracy of the improved APSMOTE-WKMFA is improved by 10.2 percentage points on average
compared with that of the class imbalance data
the k-means SMOTE
the APSMOTE
the improved APSMOTE and the improved APSMOTE-LPP
realizing the effective diagnosis of spatial bearing faults under class unbalance and variable speed conditions.
HOU L , YI H M , JIN Y H , et al . Inter-shaft bearing fault diagnosis based on aero-engine system:a benchmarking dataset study [J]. Journal of Dynamics,Monitoring and Diagnostics , 2023 , 2 ( 4 ): 228 - 242 .
JIAO Z Y , PAN L R , FAN W , et al . Partly interpretable transformer through binary arborescent filter for intelligent bearing fault diagnosis [J]. Measurement , 2022 , 203 : 111950 .
杨森 , 王恒迪 , 崔永存 , 等 . 基于改进SSA的参数优化VMD和ELM的轴承故障诊断 [J]. 机械传动 , 2023 , 47 ( 10 ): 162 - 168 .
YANG Sen , WANG Hengdi , CUI Yongcun , et al . Bearing fault diagnosis based on parameter optimized VMD and ELM with improved SSA [J]. Journal of Mechanical Transmission , 2023 , 47 ( 10 ): 162 - 168 .
王得雪 , 聂飞 , 郑智飞 , 等 . 基于时间子序列的轴承特征提取方法 [J]. 机械传动 , 2023 , 47 ( 11 ): 146 - 153 .
WANG Dexue , NIE Fei , ZHENG Zhifei , et al . Bearing feature extraction method based on the time subsequence [J]. Journal of Mechanical Transmission , 2023 , 47 ( 11 ): 146 - 153 .
胡业林 , 马向阳 , 钱文月 , 等 . 基于小波包信息熵和SO-SVM的滚动轴承故障诊断 [J]. 电子测量技术 , 2023 , 46 ( 14 ): 80 - 86 .
HU Yelin , MA Xiangyang , QIAN Wenyue , et al . Fault diagnosis of rolling bearing based on wavelet packet entropy and SO-SVM [J]. Electronic Measurement Technology , 2023 , 46 ( 14 ): 80 - 86 .
陈赛赛 , 杨晨曦 , 陈超 , 等 . 基于小波核扩散与双阶段SVM的轴承复合故障分类方法 [J]. 仪器仪表学报 , 2023 , 44 ( 10 ): 179 - 188 .
CHEN Saisai , YANG Chenxi , CHEN Chao , et al . Bearing compound fault classification method based on wavelet kernel diffusion and two-stage SVM [J]. Chinese Journal of Scientific Instrument , 2023 , 44 ( 10 ): 179 - 188 .
KHAN S H , HAYAT M , BENNAMOUN M , et al . Cost-sensitive learning of deep feature representations from imbalanced data [J]. IEEE Transactions on Neural Networks and Learning Systems , 2018 , 29 ( 8 ): 3573 - 3587 .
JIANG X , XU Y , KE W , et al . An imbalanced multifault diagnosis method based on bias weights AdaBoost [J]. IEEE Transactions on Instrumentation and Measurement , 2022 , 71 : 3505908 .
CHAWLA N V , BOWYER K W , HALL L O , et al . SMOTE:synthetic minority over-sampling technique [J]. Journal of Artificial Intelligence Research , 2002 , 16 : 321 - 357 .
HAN H , WANG W Y , MAO B H . Borderline-SMOTE:a new over-sampling method in imbalanced data sets learning [C]// Lecture Notes in Computer Science . Berlin : Springer Berlin Heidelberg , 2005 : 878 - 887 .
DOUZAS G , BACAO F , LAST F . Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE [J]. Information Sciences , 2018 , 465 : 1 - 20 .
季珊珊 , 杜华东 , 管伟琴 , 等 . 噪声干扰下基于PCA-SF的轴承故障诊断方法 [J]. 噪声与振动控制 , 2024 , 44 ( 3 ): 132 - 137 .
JI Shanshan , DU Huadong , GUAN Weiqin , et al . Fault diagnosis of bearings based on PCA-SF under noise interference [J]. Noise and Vibration Control , 2024 , 44 ( 3 ): 132 - 137 .
夏成林 , 李春琦 , 杨涛 , 等 . 基于S-ISOMAP和DAG-SVM的齿轮声学故障诊断方法 [J]. 现代雷达 , 2023 , 45 ( 9 ): 84 - 89 .
XIA Chenglin , LI Chunqi , YANG Tao , et al . Acoustic fault diagnosis method of gear based on S-ISOMAP and DAG-SVM [J]. Modern Radar , 2023 , 45 ( 9 ): 84 - 89 .
刘庆强 , 孙艳茹 , 刘远红 , 等 . 基于共享近邻加权局部线性嵌入的轴承故障诊断 [J]. 江苏大学学报(自然科学版) , 2024 , 45 ( 1 ): 85 - 91,118 .
LIU Qingqiang , SUN Yanru , LIU Yuanhong , et al . Bearing fault diagnosis based on shared neighbors weighted local linear embedding [J]. Journal of Jiangsu University (Natural Science Edition) , 2024 , 45 ( 1 ): 85 - 91,118 .
曹栩 . 基于LPP的滚动轴承故障诊断研究 [D]. 大庆 : 东北石油大学 , 2023 : 4 - 6 .
CAO Xu . Research on rolling bearing fault diagnosis based on LPP [D]. Daqing : Northeast Petroleum University , 2023 : 4 - 6 .
李宏 , 段文强 , 李富 . 多信息融合的LPP算法 [J]. 吉林大学学报(信息科学版) , 2023 , 41 ( 4 ): 599 - 607 .
LI Hong , DUAN Wenqiang , LI Fu . LPP algorithm based on multi-information fusion [J]. Journal of Jilin University (Information Science Edition) , 2023 , 41 ( 4 ): 599 - 607 .
刘锐 , 邹俊荣 , 任超 , 等 . 采用规范化局部保持投影的轴承故障诊断方法 [J]. 西安交通大学学报 , 2019 , 53 ( 6 ): 54 - 61 .
LIU Rui , ZOU Junrong , REN Chao , et al . A novel diagnostic approach for bearing faults using regularized locally maintaining projections [J]. Journal of Xi’an Jiaotong University , 2019 , 53 ( 6 ): 54 - 61 .
ZHU Q X , WANG X W , ZHANG N , et al . Novel K-medoids based SMOTE integrated with locality preserving projections for fault diagnosis [J]. IEEE Transactions on Instrumentation and Measurement , 2022 , 71 : 3528908 .
胡钢 , 李正欣 , 张凤鸣 , 等 . 二维类间边界Fisher分析的多元时间序列降维 [J]. 北京航空航天大学学报 , 2023 , 49 ( 12 ): 3537 - 3546 .
HU Gang , LI Zhengxin , ZHANG Fengming , et al . Dimension reduction of multivariate time series based on two-dimensional inter-class marginal Fisher analysis [J]. Journal of Beijing University of Aeronautics and Astronautics , 2023 , 49 ( 12 ): 3537 - 3546 .
LAUREANO L B . Affinity propagation smote approach for imbalanced dataset used in predicting student at risk of low performance [J]. International Journal of Advanced Trends in Computer Science and Engineering , 2020 , 9 ( 4 ): 5066 - 5070 .
文静 , 俞卫琴 . 基于马氏距离的半监督近邻传播聚类算法 [J]. 软件导刊 , 2023 , 22 ( 7 ): 59 - 65 .
WEN Jing , YU Weiqin . Semi-supervised affinity propagation clustering algorithm based on Mahalanobis distance [J]. Software Guide , 2023 , 22 ( 7 ): 59 - 65 .
王宏超 , 陈进 , 董广明 . 基于补偿距离评估-小波核PCA的滚动轴承故障诊断 [J]. 振动与冲击 , 2013 , 32 ( 18 ): 87 - 90,94 .
WANG Hongchao , CHEN Jin , DONG Guangming . Fault diagnosis of rolling bearing based on compensation distance evaluation technique-wavelet kernel principal component analysis [J]. Journal of Vibration and Shock , 2013 , 32 ( 18 ): 87 - 90,94 .
DONG L , LIAO J . Wavelet kernel function based multiscale LSSVM for elliptic boundary value problems [J]. Neurocomputing , 2019 , 356 : 40 - 51 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构