浏览全部资源
扫码关注微信
郑州机械研究所有限公司, 河南 郑州 450001
张磊乐(1979— ),男,河南漯河人,硕士,正高级工程师;主要研究方向为非标设备的结构创新;99336093@qq.com。
李东(1998— ),男,河南三门峡人,硕士;主要研究方向为测力系统;2577897850@qq.com。
纸质出版日期:2024-06-15,
收稿日期:2023-11-15,
修回日期:2024-01-17,
扫 描 看 全 文
张磊乐,李东,郑国良等.正交柔顺矢量测力系统的设计和性能分析[J].机械传动,2024,48(06):133-141.
Zhang Leile,Li Dong,Zheng Guoliang,et al.Design and Performance Analysis of Orthogonal Compliant Vector Force Measuring System[J].Journal of Mechanical Transmission,2024,48(06):133-141.
张磊乐,李东,郑国良等.正交柔顺矢量测力系统的设计和性能分析[J].机械传动,2024,48(06):133-141. DOI: 10.16578/j.issn.1004.2539.2024.06.020.
Zhang Leile,Li Dong,Zheng Guoliang,et al.Design and Performance Analysis of Orthogonal Compliant Vector Force Measuring System[J].Journal of Mechanical Transmission,2024,48(06):133-141. DOI: 10.16578/j.issn.1004.2539.2024.06.020.
针对多分支正交柔顺矢量测力系统的设计难题,提出了梁连接单元模拟测力元件的方法;采用该方法建立了测力分支及矢量测力系统的有限元模型,并对6种分支形式和平面布局形式进行了结构特点分析。在此基础上,结合矢量测力系统案例,通过有限元模型进行参数详细设计,最终获得了结构紧凑且耦合较小的方案。对台架的3个载荷分量(轴向力、法向力、俯仰力矩)进行了校准试验,其中,校准的不确定度均在0.5%满量程(Full Scale,FS)左右。针对大载荷矢量测力系统加载精度对校准测量的影响较大的问题,提出了基于载荷与测量比值的性能评估方法,采用该方法,得到设计的矢量测力系统的3个分量的测量重复性在0.4%FS左右,大量程测量滞后性在0.7%FS以内。研究成果对于正交矢量测力系统的结构设计和性能分析具有一定的参考意义。
Aiming at the design challenges of multi-branch orthogonal compliant vector force measuring system
a finite element method with beam connection units is proposed
and finite element models of dynamometry branches and vector force measuring system are established using this method. Structural characteristics analysis is carried out for six branch forms and lateral layout forms. Based on this
combined with a case study of vector force measuring system
detailed parameter design is conducted using the finite element model
resulting in a compact and minimally coupled structure. Calibration tests for the three load components of the vector force measuring system (axial force
normal force
and pitching moment) are performed
with uncertainties of calibration around 0.5% of the full scale (FS). To address the significant impact of the loading accuracy of high-load vector force measuring systems on calibration measurements
a performance evaluation method based on the ratio of load to measurement is proposed. Through this method
the repeatability of the three-component measurement of the designed vector force measuring system is around 0.4%FS
and the hysteresis of large-range measurement is within 0.7%FS. The research findings have quite reference significance for the structural design and performance analysis of orthogonal vector force measuring systems.
矢量测力系统柔顺机构柔性铰链挠性件矢量推力
Vector force measuring systemFlexure mechanismFlexure hingeFlexure elementVector thrust
SUNG M K,LEE S,BURNS D E.Robust topology optimization of a flexural structure considering multi-stress performance for force sensing and structural safety[J].Structural and Multidisciplinary Optimization,2021,65(1):1-21.
吴锋,杨桥,张有,等.航空发动机矢量推力测量系统的静态校准及不确定度评定方法研究[J].测控技术,2021,40(1):83-89.
WU Feng,YANG Qiao,ZHANG You,et al.Static calibration and uncertainty evaluation of aero-engine thrust vectoring measurement system[J].Measurement &Control Technology,2021,40(1):83-89.
ZHANG J,AKBAR A M,WANG X L,et al.Theoretical and experimental investigation of six-degree-of-freedom force/thrust measurement stand[J].IET Science,Measurement & Technology,2020,14(8):883-890.
PREDRAG M,NIKOLA D,BRANISLAV J,et al.A novel 6 DOF thrust vector control test stand[J].Tehnicki vjesnik-Technical Gazette,2015,22(5):1247-1254.
KUMAR R,SRIVATSA N R,SUBRAMANIAN B,et al.Calibration design evaluations through computational analysis and investigation of a six-component wind tunnel balance[J].ISSS Journal of Micro and Smart Systems,2021,10(1):1-25.
LI C G,SONG W S,SONG Y.Sensitivity and sensitivity isotropy of an 8/4-4 parallel six-axis force sensor[J].Sensor Review,2020,40(5):617-627.
于靖军,裴旭,毕树生,等.柔性铰链机构设计方法的研究进展[J].机械工程学报,2010,46(13):2-13.
YU Jingjun,PEI Xu,BI Shusheng,et al.State-of-arts of design method for flexure mechanisms[J].Journal of Mechanical Engineering,2010,46(13):2-13.
CHEN G M,LIU X Y,DU Y L,et al.Elliptical-arc-fillet flexure hinges:toward a generalized model for commonly used flexure hinges[J].Journal of Mechanical Design,2011,133(8):081002.
李立建,姚建涛,郭飞,等.混合型柔性铰链构型设计与柔度建模[J].机械工程学报,2022,58(21):78-91.
LI Lijian,YAO Jiantao,GUO Fei,et al.Configuration design and compliance modeling of hybrid flexure hinges[J].Journal of Mechanical Engineering,2022,58(21):78-91.
LI L J,ZHANG D,GUO S,et al.Design,modeling,and analysis of hybrid flexure hinges[J].Mechanism and Machine Theory,2018,131:300-316.
LIU M,LI Y F,ZHAN J Q.Multi-material topology optimization of flexure hinges using element stacking method[J].Micromachines,2022,13(7):993.
PHAM H H,CHEN I M.Stiffness modeling of flexure parallel mechanism[J].Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology,2005,29(4):467-478.
YU C F,XIONG M J,CUI L F,et al.Transmission characteristics of a two-dimensional flexure hinge mechanism[J].Microsystem Technologies,2020,26(10):1223-1234.
CHEN G M,HOWELL L L.Two general solutions of torsional compliance for variable rectangular cross-section hinges in compliant mechanisms[J].Precision Engineering,2009,33(3):268-274.
卢倩,黄卫清,孙梦馨.基于柔度比优化设计杠杆式柔性铰链放大机构[J].光学精密工程,2016,24(1):102-111.
LU Qian,HUANG Weiqing,SUN Mengxin.Optimization design of amplification mechanism for level flexure hinge based on compliance ratio[J].Optics and Precision Engineering,2016,24(1):102-111.
WEI H X,YANG J,WU F P,et al.Analytical modelling and experiments for hybrid multiaxis flexure hinges[J].Precision Engineering,2022,76:294-304.
IVANOV I,COVES B.Stiffness-oriented design of a flexure hinge-based parallel manipulator[J].Mechanics Based Design of Structures and Machines,2014,42(3):326-342.
WEI H X,SHIRINZADEH B,TANG H,et al.Closed-form compliance equations for elliptic-revolute notch type multiple-axis flexure hinges[J].Mechanism and Machine Theory,2021,156:104154.
0
浏览量
13
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构