浏览全部资源
扫码关注微信
红河学院工学院
纸质出版日期:2012
移动端阅览
[1]艾莉,程加堂.蚁群算法融合BP神经网络的齿轮故障模式识别[J].机械传动,2012,36(07):86-88.
[1]艾莉,程加堂.蚁群算法融合BP神经网络的齿轮故障模式识别[J].机械传动,2012,36(07):86-88. DOI: 10.16578/j.issn.1004.2539.2012.07.010.
DOI:
为了提高齿轮故障诊断的准确性
引入了一种蚁群算法融合BP神经网络的方法。根据齿轮的故障特征量
建立其神经网络的故障诊断模型。以网络的权值和阈值为自变量
通过蚁群算法的迭代运算
搜索出误差全局最小值
再进行网络的二次学习训练
最终实现对齿轮的故障诊断。实例仿真结果表明
该方法具有较高的故障诊断精度
可减少诊断的不确定性。
In order to improve the accuracy of the gear fault diagnosis
a fusion of ant colony algorithm and BP neural network approach is introduced.According to the fault feature vectors of the gear
the fault diagnosis model based on neural network is established.The network weights and threshold as the independent variables
through the ant colony algorithm iteration
the error of the global minimum is searched
then secondary learning and training of the network is carried out
and ultimately
the gear fault diagnosis is realized.Example simulation results show that the method has high accuracy of fault diagnosis
and diagnostic uncertainty is reduced.
0
浏览量
222
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构