摘要:针对行星齿轮箱故障诊断过程中的故障特征向量区分度差、诊断成功率不够高等问题,提出了一种基于局部均值分解(Local mean decomposition,LMD)排列熵和BP神经网络结合的方法。对原始信号进行LMD,获得包含主要信息的PF分量,计算排列熵值,构造特征向量,利用提取的特征向量训练BP神经网络,完成故障模式识别。以EMD排列熵方法和无量纲分析方法作为对比组,实验验证说明,提出方法提取到的不同工况的特征向量区分度更强,故障诊断效果更好;且当训练组数发生变化时,提出方法的综合表现更优秀。
摘要:针对小样本情况下齿轮箱复合故障特征难以识别的问题,提出了基于局部均值分解(Local mean decomposition,LMD)能量熵的齿轮箱故障诊断方法。利用LMD方法对齿轮箱振动信号进行处理,得到若干个PF分量;利用不同状态下齿轮箱振动信号在频域区间内分布不均的特性,计算出分量能量在频域区间离散的值,即LMD能量熵;通过不同状态下LMD能量熵的分布进行了齿轮箱故障分类。结果显示,在小样本情况下,基于LMD能量熵方法能够精确地对齿轮箱故障类型进行特征提取和故障诊断,也表明了该方法对齿轮箱故障诊断的优越性。