浏览全部资源
扫码关注微信
1.北京建筑大学 机电与车辆工程学院, 北京 102616
2.中国北方车辆研究所 车辆传动重点实验室, 北京 100072
李杰(1977— ),男,黑龙江齐齐哈尔人,博士,教授;主要研究方向为车辆传动技术、高能摩擦与制动、智能仿生结构设计;lijie1@bucea.edu.cn。
纸质出版日期:2024-07-15,
收稿日期:2023-04-21,
修回日期:2023-04-25,
扫 描 看 全 文
李杰,王帅,兰海等.基于SSA-BP近似模型的湿式制动器带排转矩参数CSO智能优化[J].机械传动,2024,48(07):128-136.
Li Jie,Wang Shuai,Lan Hai,et al.CSO Intelligent Optimization of Drag Torque Parameters of Wet Brakes Based on the SSA-BP Approximate Model[J].Journal of Mechanical Transmission,2024,48(07):128-136.
李杰,王帅,兰海等.基于SSA-BP近似模型的湿式制动器带排转矩参数CSO智能优化[J].机械传动,2024,48(07):128-136. DOI: 10.16578/j.issn.1004.2539.2024.07.016.
Li Jie,Wang Shuai,Lan Hai,et al.CSO Intelligent Optimization of Drag Torque Parameters of Wet Brakes Based on the SSA-BP Approximate Model[J].Journal of Mechanical Transmission,2024,48(07):128-136. DOI: 10.16578/j.issn.1004.2539.2024.07.016.
针对湿式制动器在非制动工况下功率损失的工程问题,考虑摩擦副间隙内部的润滑油对摩擦副带排转矩的影响,运用麻雀搜索算法-反向传播(Sparrow Search Algorithm-Back Propagation,SSA-BP)神经网络的强大非线性拟合能力,以制动器空载工况为输入量、带排转矩为输出量,建立了湿式制动器近似模型;与传统的BP模型对比,该模型预测精度明显提高,更能满足实际工程的需要;同时,为获取最小带排转矩,采用鸡群优化(Chicken Swarm Optimization,CSO)智能算法对工况参数进行搜索寻优,得到湿式制动器的最佳工况。经试验测试验证,与优化前相比,优化后摩擦副间的带排转矩和功率损失有着明显降低。研究为湿式制动器结构的进一步优化提供了理论基础和工程实践经验。
To solve the engineering problem of power loss in wet brakes under non-braking conditions
taking into consideration the influence of the lubricating oil in the clearance of friction pairs on the drag torque of the friction pair
making use of the strong nonlinear fitting ability of the sparrow-search-algorithm-back propagation (SSA-BP) neural network
and taking the no-load operating condition of wet brakes as the input variable and the drag torque as the output variable
an approximate model of wet brakes is established. Compared with the traditional BP model
the prediction accuracy is obviously improved
which can meet the needs of practical engineering. In order to obtain the minimum drag torque
the working parameters are searched and optimized through chicken swarm optimization (CSO) intelligent algorithm
and the best working condition of the wet brake is obtained. The experimental results show that the drag torque and power loss between the friction pairs after optimization are significantly lower than those before optimization. This study provides theoretical research basis and engineering practice experience for the further optimization of wet brake structure.
湿式制动器带排转矩SSA-BP模型CSO算法近似模型
Wet brakeDrag torqueSSA-BP modelCSO algorithmApproximate model
赵波.初始制动时预测湿式制动器热对流特性的积分方法[J].机械工程学报,2020,56(24):198-207.
ZHAO Bo.Integration method of thermal convection characteristics prediction for unsteady laminar flows during initial braking stage of wet brakes[J].Journal of Mechanical Engineering,2020,56(24):198-207.
SINGH S K,ABBASSI H,TAMAMIDIS P.3D investigation into the thermal behavior of the wet multi-disk axle brake of an off-highway machinery[J].Applied Thermal Engineering,2018,136:576-588.
张传伟,刘劲鹏,赵大卫,等.矿用湿式多盘制动器温升特性研究[J].西安科技大学学报,2022,42(1):134-142.
ZHANG Chuanwei,LIU Jinpeng,ZHAO Dawei,et al.Research on temperature rise characteristics of mine-used wet multi-disc brakes[J].Journal of Xi'an University of Science and Technology,2022,42(1):134-142.
周李洪.地下无人车辆湿式制动器系统带排转矩的研究[J].机械传动,2015,39(9):26-28,45.
ZHOU Lihong.Study on the drag torque characteristic of underground unmanned vehicle wet brake system[J].Journal of Mechanical Transmission,2015,39(9):26-28,45.
YU L,MA B,CHEN M,et al.Variation mechanism of the friction torque in a Cu-based wet clutch affected by operating parameters[J].Tribology Internatioal,2020,147:106169.
李乐,舒越超,吴健鹏,等.基于PSO-BP神经网络湿式摩擦元件损伤预测模型[J].北京理工大学学报,2022,42(12):1246-1255.
LI Le,SHU Yuechao,WU Jianpeng,et al.A damage prediction model of wet friction elements based on PSO-BP neural network[J].Transations of Beijing Institute of Technology,2022,42(12):1246-1255.
童哲铭,陈尧,童水光,等.基于NSGA-Ⅲ算法的低比转速离心泵多目标优化设计[J].中国机械工程,2020,31(18):2239-2246.
TONG Zheming,CHEN Yao,TONG Shuiguang,et al.Multi-objective optimization design of low specific speed centrifugal pumps based on NSGA-Ⅲ algorithm [J].China Mechanical Engineering,2020,31(18):2239-2246.
张德胜,杨港,赵旭涛,等.基于BP神经网络的立式离心泵导叶与蜗壳优化设计[J].农业机械学报,2022,53(4):130-139.
ZHANG Desheng,YANG Gang,ZHAO Xutao,et al.Optimization design of vane diffuser and volute in vertical centrifugal pump based on back propagation neural network[J].Journal of Agricultural Machinery,2022,53(4):130-139.
姚景瑜,孟海洋,杨京,等.基于BP人工神经网络的轴流风扇气动噪声预测[J].南京大学学报(自然科学版),2020,56(6):900-908.
YAO Jingyu,MENG Haiyang,YANG Jing,et al.Aerodynamic noise prediction of tube-axial fan based on BP artificial neural network[J].Journal of Nanjing University (Natural Science),2020,56(6):900-908.
PEI J,GAN X C,WANG W J,et al.Multi-objective shape optimization on the inlet pipe of a vertical inline pump[J].Journal of Fluids Engineering:Transactions of the ASME,2019,141(6):061108.
王超,韩康,孙聪,等.船用螺旋桨优化设计与参数分析[J].华中科技大学学报(自然科学版),2020,48(4):97-102.
WANG Chao,HAN Kang,SUN Cong,et al.Marine propeller optimization design and parameter analysis[J].Journal of Huazhong University of Science and Technology (Natural Science Edition),2020,48(4):97-102.
罗明,左志涛,李弘扬,等.基于BP人工神经网络的离心压气机叶轮多目标优化设计方法[J].航空动力学报,2016,31(10):2424-2431.
LUO Ming,ZUO Zhitao,LI Hongyang,et al.Multi-objective optimization design method of centrifugal compressor impeller based on BP artificial neural network[J].Journal of Aerospace Power,2016,31(10):2424-2431.
谭敏生,蔡畅.基于鸡群算法和核极限学习机的入侵检测模型[J].自动化与仪器仪表,2020(12):1-5.
TAN Minsheng,CAI Chang.Intrusion detection model based on chicken swarm optimization algorithm and kernel limit learning machine[J].Automation & Instrumentation,2020(12):1-5.
杨帆.改进人工神经网络于配电网在线重构中的研究和应用[D].长沙:湖南大学,2012:20-35.
YANG Fan.Research and application of improved artificial neural network in on-line reconfiguration of distribution network[D].Changsha:Hunan University,2012:20-35.
柏鹤,于丽蓉,夏小添.基于人工蜂群优化的常模盲均衡算法[J].指挥信息系统与技术,2019,10(6):66-70.
BAI He,YU Lirong,XIA Xiaotian.Constant modulus blind equalization algorithm based on artificial bee colony optimization[J].Command Information System and Technology,2019,10(6):66-70.
向小蓉,刘涤尘,向农,等.基于并行禁忌搜索算法的配电网重构[J].电网技术,2012,36(8):100-105.
XIANG Xiaorong,LIU Dichen,XIANG Nong,et al.Distribution network reconfiguration based on parallel Tabu search algorithm[J].Power System Technology,2012,36(8):100-105.
邱超斌,张猛,郎利辉,等.基于神经网络遗传算法的深腔型零件拉深工艺参数优化[J].精密成形工程,2021,13(5):173-179.
QIU Chaobin,ZHANG Meng,LANG Lihui,et al.Parameter optimization of deep drawing process for deep cavity parts based on neural network genetic algorithm[J].Precision Forming Engineering,2021,13(5):173-179.
SONG S H,XIONG X Y,WU X,et al.Modeling the SOFC by BP neural network algorithm[J].International Journal of Hydrogen Energy,2021,46(38):20065-20077.
薛建凯.一种新型的群智能优化技术的研究与应用[D].上海:东华大学,2020:15-20.
XUE Jiankai.Research and application of a new swarm intelligence optimization technology[D].Shanghai:Donghua University,2020:15-20.
胡建华,黄宇龙,张坚,等.基于麻雀搜索算法优化双隐含层BP神经网络的张力减径钢管壁厚预测[J].塑性工程学报,2022,29(8):145-151.
HU Jianhua,HUANG Yulong,ZHANG Jian,et al.Wall thickness prediction of steel pipe during tension reduction based on double hidden layer BP neural network optimized by sparrow search algorithm[J].Journal of Plasticity Engineering,2022,29(8):145-151.
MENG X B,LIU Y,GAO X Z,et al.A new bio-inspired algorithm:by sparraw chicken swarm optimization[C]//TAN Y,SHI Y,COELLO C.5th International Conference in Swarm Intelligence.Cham:Springer,2014:86-94.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构