浏览全部资源
扫码关注微信
1.广西大学 机械工程学院, 广西 南宁 530004
2.中国科学院深圳先进技术研究院, 广东 深圳 518055
3.深圳市精密工程重点实验室, 广东 深圳 518055
丁江(1986— ),男,广东高州人,副教授;主要研究方向为机械结构与系统动力学、机器人机构学、精密机械传动技术;jding@gxu.edu.cn。
崔家旭(1996— ),男,河北保定人,硕士研究生;主要研究方向为墙面作业机器人的结构设计与控制;3051225628@qq.com。
纸质出版日期:2024-01-15,
收稿日期:2022-10-23,
移动端阅览
丁江,崔家旭,左启阳等.基于无迹卡尔曼滤波算法的喷涂机器人末端位姿补偿系统[J].机械传动,2024,48(01):8-13.
Ding Jiang,Cui Jiaxu,Zuo Qiyang,et al.End Pose Compensation System of Spraying Robots Based on Unscented Kalman Filter Algorithm[J].Journal of Mechanical Transmission,2024,48(01):8-13.
丁江,崔家旭,左启阳等.基于无迹卡尔曼滤波算法的喷涂机器人末端位姿补偿系统[J].机械传动,2024,48(01):8-13. DOI: 10.16578/j.issn.1004.2539.2024.01.002.
Ding Jiang,Cui Jiaxu,Zuo Qiyang,et al.End Pose Compensation System of Spraying Robots Based on Unscented Kalman Filter Algorithm[J].Journal of Mechanical Transmission,2024,48(01):8-13. DOI: 10.16578/j.issn.1004.2539.2024.01.002.
喷涂建筑机器人在进行建图时无法将地面平整度的信息包含在地图中。当机器人按照所建地图运行时,由于地面信息的缺失,喷涂建筑机器人工作末端的喷涂夹具无法与墙面平行。为补偿喷涂夹具相对于墙面之间的位姿误差,提出一种基于无迹卡尔曼滤波的多传感器融合的喷涂夹具位
姿补偿方法:以位移测量传感器测得的数据构建夹具位姿的状态方程,以陀螺仪测得的数据构建夹具位姿测量方程;利用无迹卡尔曼滤波算法获得夹具姿态的最优估计并将其传递给机器人,从而实现对喷涂夹具位姿误差的补偿。搭建实验平台验证了误差补偿系统的可行性。实验结果表明,误差补偿后的喷涂夹具相对于墙面之间的角度误差减小至
<math id="M1"><mn mathvariant="normal">0.005</mn><mo>°</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70490327&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70490324&type=
10.75266743
3.04800010
。
The spraying construction robot is unable to include information about ground leveling in the map when it is created
and when the robot operates according to the built map
the spraying clamping fixture at the working end of the spraying construction robot can not be parallel to the wall due to the lack of ground information. In order to compensate the posture error of the spraying fixture relative to the wall
a multi-sensor fusion method is proposed based on the unscented Kalman filter to compensate the posture of the spraying fixture.The state equation of the fixture posture is constructed from the data measured by the displacement measurement sensor, the equation of fixture posture measurement is constructed from the data measured by the gyroscope
and the optimal estimation of the fixture posture is obtained by using the unscented Kalman filter algorithm and transferring them to the robot
so as to achieve the purpose of compensating the posture error of the spraying fixture. Finally
the experimental platform is built to verify the feasibility of the error compensation system. The experimental results show that the positional error between the spraying fixture and the wall after error compensation is reduced to 0.005°.
无迹卡尔曼滤波位移测量传感器陀螺仪误差补偿喷涂夹具
Unscented Kalman filterDisplacement measurement sensorGyroscopeError compensationSpraying fixture
李朋昊,李朱锋,益田正,等.建筑机器人应用与发展[J].机械设计与研究,2018,34(6):25-29.
LI Penghao,LI Zhufeng,YI Tianzheng,et al.Application and development of construction robot[J].Machine Design & Research,2018,34(6):25-29.
刘海波,武学民.国外建筑业的机器人化──国外建筑机器人发展概述[J].机器人,1994(2):119-128.
LIU Haibo,WU Xuemin.Robotization of foreign construction industry─overview of the development of foreign construction robots[J].Robot,1994(2):119-128.
陈翀,李星,邱志强,等.建筑施工机器人研究进展[J].建筑科学与工程学报,2022,39(4):58-70.
CHEN Chong,LI Xing,QIU Zhiqiang,et al.Research progress of construction robots[J].Journal of Architecture and Civil Engineering,2022,39(4):58-70.
WANG J,JIANG X,LI X,et al.3D SLAM applied to an autonomous interior finishing robot[C]//2018 IEEE International Conference on Robotics and Biomimetics (ROBIO).IEEE,2018:462-467.
JI H,JIANG X,DU Y,et al.A structured light based measuring system used for an autonomous interior finishing robot[C]//2017 IEEE International Conference on Real-time Computing and Robotics (RCAR).IEEE,2017:677-682.
杨冬.幕墙安装建筑机器人系统关键技术研究[D].天津:河北工业大学,2013:47-64.
YANG Dong.Research on key technologies of curtain wall installation construction robot system[D].Tianjin:Hebei University of Technology,2013:47-64.
HELM V,ERCAN S,GRAMAZIO F,et al.Mobile robotic fabrication on construction sites:DimRob[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.IEEE,2012:4335-4341.
SANDY T,GIFTTHALER M,DORFLER K,et al.Autonomous repositioning and localization of an in-situ fabricator[C]//2016 IEEE International Conference on Robotics and Automation (ICRA).IEEE,2016:2852-2858.
LI W,WEI G,HAN F,et al.Weighted average consensus-based unscented Kalman filtering[J].IEEE Transactions on Cybernetics,2015,46(2):558-567.
刘康安,张伟伟,肖永超,等.基于自适应无迹卡尔曼滤波的四旋翼无人机姿态解算[J].电光与控制,2022,29(7):126-131.
LIU Kang'an,ZHANG Weiwei,XIAO Yongchao,et al.Attitude calculation of quadrotor UAV based on adaptive unscented Kalman filter[J].Electronics Optics & Control,2022,29(7):126-131.
赵玏洋,闫利.移动机器人SLAM位姿估计的改进四元数无迹卡尔曼滤波[J].测绘学报,2022,51(2):212-223.
ZHAO Leyang,YAN Li.Advanced quaternion unscented Kalman filter for SLAM of mobile robot pose estimation[J].Acta Geodaetica et Cartographica Sinica,2022,51(2):212-223.
HUANG C,LIU Y,JIA Y,et al.Position estimation for an unmanned ground car (UGC) by multi-sensor fusion under random loss of GPS signals[C]//2015 IEEE International Conference on Cyber Technology in Automation,Control,and Intelligent Systems (CYBER).IEEE,2015:1000-1005.
0
浏览量
9
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构