浏览全部资源
扫码关注微信
哈尔滨工业大学 机电工程学院, 黑龙江 哈尔滨 150001
张钰忻(1994— ),女,黑龙江哈尔滨人,博士研究生;主要研究方向为一次性谐波齿轮传动的刚度评价方法;zyuxin_hit@126.com。
李跃峰(1984— ),男,黑龙江密山人,副教授,博士研究生导师;主要研究方向为极端工况机械结构疲劳损伤机理及寿命预测;yuefengli@hit.edu.cn。
纸质出版日期:2023-09-15,
收稿日期:2022-07-10,
修回日期:2022-08-07,
扫 描 看 全 文
张钰忻,潘旭东,李跃峰等.一次性谐波齿轮的裂纹扩展仿真与啮合刚度研究[J].机械传动,2023,47(09):10-17.
Zhang Yuxin,Pan Xudong,Li Yuefeng,et al.Crack Propagation Simulation and Meshing Stiffness Analysis of Disposable Harmonic Gears[J].Journal of Mechanical Transmission,2023,47(09):10-17.
张钰忻,潘旭东,李跃峰等.一次性谐波齿轮的裂纹扩展仿真与啮合刚度研究[J].机械传动,2023,47(09):10-17. DOI: 10.16578/j.issn.1004.2539.2023.09.002.
Zhang Yuxin,Pan Xudong,Li Yuefeng,et al.Crack Propagation Simulation and Meshing Stiffness Analysis of Disposable Harmonic Gears[J].Journal of Mechanical Transmission,2023,47(09):10-17. DOI: 10.16578/j.issn.1004.2539.2023.09.002.
将航空航天等领域中使用过一次后不再重复利用的机械设备称为一次性机械。柔轮的失效是影响一次性谐波减速器性能的最主要因素,而啮合刚度的变化又可以反映谐波传动的故障特征。以一次性谐波齿轮为研究对象,从应用环境和结构区分一次性谐波齿轮与常规谐波齿轮,分析了一次性谐波传动中柔轮的裂纹萌生位置;基于扩展有限元法,建立了一次性谐波齿轮传动的损伤模型,观察了柔轮裂纹的扩展路径,并据此建立了一次性谐波齿轮传动的裂纹刚度模型;最后,分析了裂纹对一次性谐波传动啮合刚度的影响。研究结论可为一次性谐波齿轮的故障诊断和寿命预测提供理论支撑。
The mechanical equipment in aerospace field that will not be reused after being used once is called disposable machinery. The failure of the flexible wheel is the most important factor affecting the performance of the disposable harmonic reducer. The change of the meshing stiffness can reflect the fault characteristics of the harmonic drive. In this study
the disposable and conventional harmonic gears are distinguished from the application environment and structure. Then
the crack initiation position of the flexible wheel in the disposable harmonic drive is analyzed. Besides
the damage model of the disposable harmonic flexible has been established based on the extended finite element method
and the crack propagation path of the flexible wheel rim is observed. Finally
the effect of cracks on the meshing stiffness of the disposable harmonic drive is discussed. The research conclusions of this study can provide theoretical support for fault diagnosis and life prediction of disposable harmonic gears.
一次性谐波齿轮裂纹扩展啮合刚度扩展有限元法
Disposable harmonic gearCrack propagationMeshing stiffnessExtended finite element method
王广林,潘旭东,李跃峰.一次性机械设计理念及实践[J].机械工程学报,2014,50(1):152-156.
WANG Guanglin,PAN Xudong,LI Yuefeng.Disposable mechanical element design theory and applications[J].Journal of Mechanical Engineering,2014,50(1):152-156.
WANG S,JIANG G,MEI X,et al.A rapid stress calculation method for short flexspline harmonic drive[J].Engineering Computations,2019,36(6):1852-1867.
高云,杨柳青,刘帅,等.齿轮齿根疲劳裂纹扩展特性和剩余寿命研究[J].机械强度,2019,41(3):718-723.
GAO Yun,YANG Liuqing,LIU Shuai,et al.Research on fatigue crack propagation characteristics and remaining life at the tooth root of a gear[J].Journal of Mechanical Strength,2019,41(3):718-723.
LI J C,LEE H.Gear fatigue crack prognosis using embedded model,gear dynamic model and fracture mechanics[J].Mechanical Systems and Signal Processing,2005,19(4):836-846.
PODRUG S,JELASKA D,GLODEZ S.Influence of different load models on gear crack path shapes and fatigue lives[J].Fatigue & Fracture of Engineering Materials & Structures,2008,31(5):327-339.
PATIL V,CHOUHAN V,PANDYA Y.Geometrical complexity and crack trajectory based fatigue life prediction for a spur gear having tooth root crack[J].Engineering Failure Analysis,2019,105:444-465.
DOAN O,YUCE C,KARPAT F.Effects of rim thickness and drive side pressure angle on gear tooth root stress and fatigue crack propagation life[J].Engineering Failure Analysis,2021,122:105260.
MOES N,DOLBOW J,BELYTSCHKO T.A finite element method for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering,1999,46:131-150.
BELYTSCHKO T,BLACK T.Elastic crack growth in finite elements with minimal remeshing[J].International Journal for Numerical Methods in Engineering,1999,45(5):601-620.
STOLARSKA M,CHOPP D L,MOES N,et al.Modeling crack growth by level sets in the extended finite element method[J].International Journal for Numerical Methods in Engineering,2001,51(8):943-960.
余洋,唐进元,刘尧喜,等.基于XFEM的高速工况下齿根裂纹扩展规律研究[J].机械传动,2018,42(12):1-6.
YU Yang,TANG Jinyuan,LIU Yaoxi,et al.Study on gear tooth crack propagation under the high speed condition based on extended finite element method[J].Journal of Mechanical Transmission,2018,42(12):1-6.
HIUNG F Z,AL-QRIMLI H F,MORRIS K I.Implementation of XFEM in the study of gear crack propagation behaviour using the SIF on different moments[J].International Journal of Simulation and Process Modelling,2017,12(3/4):362-368.
CURA F,MURA A,ROSSO C.Effect of rim and web interaction on crack propagation paths in gears by means of XFEM technique[J].Fatigue & Fracture of Engineering Materials & Structures,2015,38(10):1237-1245.
MA H,PANG X,FENG R,et al.Fault features analysis of cracked gear considering the effects of the extended tooth contact[J].Engineering Failure Analysis,2015,48:105-120.
CHEN K,HUANGFU Y,MA H,et al.Calculation of mesh stiffness of spur gears considering complex foundation types and crack propagation paths[J].Mechanical Systems and Signal Processing,2019,130:273-292.
VERMA J G,KUMAR S,KANKAR P K.Crack growth modeling in spur gear tooth and its effect on mesh stiffness using extended finite element method[J].Engineering Failure Analysis,2018,94:109-120.
吴家腾,杨宇,程军圣.基于解析有限元的齿根裂纹时变啮合刚度计算方法[J].机械工程学报,2018,54(23):56-62.
WU Jiateng,YANG Yu,CHENG Junsheng.Time-varying mesh stiffness calculation for gear tooth crack based on analytical-finite element method[J].Journal of Mechanical Engineering,2018,54(23):56-62.
万志国,訾艳阳,曹宏瑞.直齿圆柱齿轮齿根裂纹扩展仿真及齿轮时变啮合刚度分析[J].应用数学和力学,2015,36(S1):14-20.
WAN Zhiguo,ZI Yanyang,CAO Hongrui.Simulation of tooth crack propagation and analysis of time-varying meshing stiffness of spur gear[J].Applied Mathematics and Mechanics,2015,36(S1):14-20.
舒斌,刘文光.多齿根裂纹对齿轮传动时变啮合刚度的影响[J].科学技术与工程,2018,18(11):196-201.
SHU Bin,LIU Wenguang.Impacts of multiple tooth root cracks on time-varying mesh stiffness of gear drive[J].Science Technology and Engineering,2018,18(11):196-201.
孟宗,石桂霞,王福林,等.基于时变啮合刚度的裂纹故障齿轮振动特征分析[J].机械工程学报,2020,56(17):108-115.
MENG Zong,SHI Guixia,WANG Fulin,et al.Vibration characteristic analysis of cracked gear based on time-varying meshing stiffness[J].Journal of Mechanical Engineering,2020,56(17):108-115.
HU S Y,FANG Z D.Analysis and modeling of the synthetical meshing stiffness of inner gearing considering the flexible inner ring gear[J].Shock and Vibration,2019,2019:1-10.
KAYABASI O,ERZINCANLI F.Shape optimization of tooth profile of a flexspline for a harmonic drive by finite element modelling[J].Materials and Design,2007,28(2):441-447.
RHEAUME F E,CHAMPLIAUD H,LIU Z.On the computing of the torsional rigidity of a harmonic drive using FEA[C]//International Ansys Conference and Exhibition,2006:2-4.
RHEAUME F E,CHAMPLIAUD H,LIU Z.Understanding and modelling the torsional stiffness of harmonic drives through finite-element method[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2009,223(2):515-524.
MA J,LI C,LUO Y,et al.Simulation of meshing characteristics of harmonic reducer and experimental verification[J].Advances in Mechanical Engineering,2018,10(3):1-9.
MA D,WANG R,RAO P,et al.Automated analysis of meshing performance of harmonic drive gears under various operating conditions[J].IEEE Access,2018,6:68137-68154.
韦乐余,王长路,张立勇,等.谐波齿轮啮合刚度的有限元分析[J].机械传动,2018,42(6):144-147.
WEI Leyu,WANG Changlu,ZHANG Liyong,et al.Finite element analysis of meshing stiffness of harmonic gear[J].Journal of Mechanical Transmission,2018,42(6):144-147.
ZHANG Y X,WANG G L,PAN X D,et al.Calculating the load distribution and contact stress of the disposable harmonic drive under full load[J].Machines,2022,10(2):96.
ZHANG Y X,PAN X D,LI Y F,et al.Meshing stiffness calculation of disposable harmonic drive under full load[J].Machines,2022,10(4):271.
0
浏览量
14
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构