浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2.中国科学院大学, 北京 100049
3.长春工业大学 机电工程学院, 吉林 长春 130012
李佳彪(1998— ),男,山西长治人,在读硕士研究生;主要研究方向为精密仪器设备调整及共相误差的调整;lijiabiao26@163.com。
赵阳(1991— ),男,吉林省吉林人,硕士,助理研究员;主要研究方向为柔性结构设计、稀疏孔径成像技术;zhaoyang9185@163.com。
纸质出版日期:2023-07-15,
收稿日期:2022-05-29,
修回日期:2022-06-28,
扫 描 看 全 文
李佳彪,赵阳,吴清文等.幂函数正弦柔性铰链设计与分析[J].机械传动,2023,47(07):77-83.
Li Jiabiao,Zhao Yang,Wu Qingwen,et al.Design and Analysis of Power-function-sine Flexure Hinges[J].Journal of Mechanical Transmission,2023,47(07):77-83.
李佳彪,赵阳,吴清文等.幂函数正弦柔性铰链设计与分析[J].机械传动,2023,47(07):77-83. DOI: 10.16578/j.issn.1004.2539.2023.07.011.
Li Jiabiao,Zhao Yang,Wu Qingwen,et al.Design and Analysis of Power-function-sine Flexure Hinges[J].Journal of Mechanical Transmission,2023,47(07):77-83. DOI: 10.16578/j.issn.1004.2539.2023.07.011.
提出了一种新型幂函数正弦柔性铰链,利用卡氏第二定理推导了柔性铰链的柔度与转动精度计算公式,并取不同参数值对柔度和转动精度进行了有限元仿真分析和理论值计算,相对误差在10%以内,验证了计算公式的正确性;分析了柔性铰链的曲线方程参数对铰链性能的影响。结果表明,最小厚度对柔性铰链的性能影响最大。此外,将椭圆、双曲线与新型铰链进行了对比。结果表明,椭圆柔性铰链的柔度最大,但是转动精度最小;双曲线柔性铰链的转动精度最大,但是柔度最小。通过引入柔度精度比
β
,分析对比得知,在相同
L
的情况下,改变
d
,幂函数正弦柔性铰链的
β
值分别比椭圆和双曲线柔性铰链平均提高了2.68倍和1.237倍;在相同
d
的情况下,改变
L
,幂函数正弦柔性铰链的
β
值分别比椭圆和双曲线柔性铰链平均提高了2.60倍和1.18倍。表明幂函数正弦柔性铰链的综合性能更有优势。
In this study
a new type of power-function-sine flexure hinge is proposed. The calculation formula of compliance and rotation accuracy of the flexure hinge is derived by using Castigliano's second theorem. The finite element simulation analysis and theoretical value calculation of compliance and rotation accuracy are carried out by taking different parameter values. The relative error is less than 10%
which verifies the correctness of the calculation formula. The influence of curve equation parameters of the flexure hinge on the performance of the flexure hinge is analyzed. The results show that the minimum thickness has the greatest influence on the performance of the flexure hinge. In addition
the ellipse and hyperbola are compared with the new hinge. The results show that the ellipse flexure hinge has the greatest compliance
but the rotation accuracy is the smallest; the hyperbolic flexure hinge has the highest rotation accuracy
but the lowest compliance. By introducing the compliance accuracy ratio
β
through analysis and comparison
it is known that under the same
L
and the changing
d
the value of the power function sine flexure hinge
β
is 2.68 times and 1.237 times higher than those of elliptical and hyperbola flexure hinges respectively. With the same flexure hinge diameter and the changing length
the value of the power function of sinusoidal flexure hinge
β
is 2.60 times and 1.18 times higher than that of elliptic and hyperbolic flexure hinges respectively. It shows that the power function sinusoidal flexure hinge has more advantages in comprehensive performance.
柔性铰链幂函数正弦柔度转动精度有限元分析
Flexure hingePower-function-sineComplianceRotation accuracyFinite element analysis
刘庆玲,翁海珊,邱丽芳.新型单边直圆椭圆混合柔性铰链的柔度计算及其性能分析[J].工程力学,2010,27(10):52-56.
LIU Qingling,WENG Haishan,QIU Lifang.Compliances calculation and behavior analysis of the half right circular-elliptical hybrid flexure hinge[J].Engineering Mechanics,2010,27(10):52-56.
LIU M,ZHANG X M,FATIKOW S.Design and analysis of a multi-notched flexure hinge for compliant mechanisms[J].Precision Engineering,2016,48:292-304.
于靖军,宗光华,毕树生.全柔性机构与MEMS[J].光学精密工程,2001,9(1):1-5.
YU Jingjun,ZONG Guanghua,BI Shusheng.Fully compliant mechanisms and MEMS[J].Optics and Precision Engineering,2001,9(1):1-5.
PAROS J M,WEISBORD L.How to design flexure hinges[J].Machanical Design,1965,37(27):151-156.
吴鹰飞,周兆英.柔性铰链的设计计算[J].工程力学,2002(6):136-140.
WU Yingfei,ZHOU Zhaoying.Design calculation of flexure hinges[J].Engineering Mechanics,2002(6):136-140.
LOBONTIU N,PAINE J S N,GARCIA E,et al.Design of symmetric conic-section flexure hinges based on closed-form compliance equations[J].Mechanism and Machine Theory,2002,37(5):477-498.
张志杰,袁怡宝.基于闭环柔度解析式的双曲线形柔性铰链研究[J].仪器仪表学报,2007(6):1055-1059.
ZHANG Zhijie,YUAN Yibao.Research on half hyperbolic flexure hinge based on closed-form compliance equations[J].Chinese Journal of Scientific Instrument,2007(6):1055-1059.
张志杰,袁怡宝.典型柔性铰链柔度性能的计算与分析[J].工程力学,2008,25(4):106-110.
ZHANG Zhijie,YUAN Yibao.Compliances calculation and analysis of typical flexure hinge[J].Engineering Mechanics,2008,25(4):106-110.
TIAN Y,SHIRINZADEH B,ZHANG D.Closed-form compliance equations of filleted V-shaped flexure hinges for compliant mechanism design[J].Precision Engineering,2009,34(3):408-418.
张伟,杨立保,李清雅,等.直圆抛物线复合铰链柔度研究[J].红外与激光工程,2018,47(11):258-264.
ZHANG Wei,YANG Libao,LI Qingya,et al.Research on compliance of compound circular-parabolic hinges[J].Infrared and Laser Engineering,2018,47(11):258-264.
LI L J,ZHANG D,GUO S,et al.Design,modeling and analysis of hybrid flexure hinges[J].Mechanism and Machine Theory,2018,131:300-316.
王传礼,李成,何涛,等.椭圆导角混合柔性铰链的设计计算与性能分析[J].中国机械工程,2021,32(9):1017-1026.
WANG Chuanli,LI Cheng,HE Tao,et al.Design calculation and performance analysis of elliptical corner filleted hybrid flexure hinges[J].China Mechanical Engineering,2021,32(9):1017-1026.
LIU M,ZHANG X M,SERGEJ F.Design and analysis of a high-accuracy flexure hinge[J].Review of Scientific Instruments,2016,87(5):055106.
LI Q,PAN C N,XU X J.Closed-form compliance equations for power-function-shaped flexure hinge based on unit-load method[J].Precision Engineering,2013,37(1):135-145.
WANG R Q,ZHOU X Q,ZHU Z W.Development of a novel sort of exponent-sine-shaped flexure hinges[J].Review of Scientific Instruments,2013,84(9):095008.
0
浏览量
12
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构