浏览全部资源
扫码关注微信
1.贵州民族大学 机械电子工程学院, 贵州 贵阳 550025
2.湖北工业大学 机械工程学院, 湖北 武汉 430068
3.武汉城市职业学院 汽车技术与服务学院, 湖北 武汉 430068
吴震宇(1982— ),男,辽宁大连人,博士研究生,副教授;研究方向为齿轮传动机构的设计与制造;wzy5221027@163.com。
纸质出版日期:2023-07-15,
收稿日期:2022-05-11,
修回日期:2022-05-13,
扫 描 看 全 文
吴震宇,王思明,李玲等.摆线针轮传动的啮合区间计算方法研究[J].机械传动,2023,47(07):1-8.
Wu Zhenyu,Wang Siming,Li Ling,et al.Research on Calculation Methods of Meshing Intervals of Cycloid Pin Gear Transmission[J].Journal of Mechanical Transmission,2023,47(07):1-8.
吴震宇,王思明,李玲等.摆线针轮传动的啮合区间计算方法研究[J].机械传动,2023,47(07):1-8. DOI: 10.16578/j.issn.1004.2539.2023.07.001.
Wu Zhenyu,Wang Siming,Li Ling,et al.Research on Calculation Methods of Meshing Intervals of Cycloid Pin Gear Transmission[J].Journal of Mechanical Transmission,2023,47(07):1-8. DOI: 10.16578/j.issn.1004.2539.2023.07.001.
针对摆线针轮传动齿廓修形量优化过程中无合适约束条件、逆向工程难以确定摆线轮齿廓修形量以及对摆线针轮传动特性研究时其啮合区间无法获取等问题,开展了摆线轮啮合区间确定方法的研究。首先,对刚度进行分析,确定了影响刚度的主要部件。然后,通过关键部件处的接触刚度分析,分别建立了滚针轴承、圆锥滚子轴承以及摆线轮啮合点扭转刚度模型。在此基础上,推导出以滚针轴承、圆锥滚子轴承以及整机扭转角度为变量的摆线轮扭转刚度方程。最后,依据啮合点连续性原理,计算出所有满足啮合点扭转刚度之和近似等于摆线轮扭转刚度的啮合区间,并依据摆线轮初始啮合点不随负载增加而改变的原理,最终实现对不同负载下可行啮合区间的筛选。该方法分析结果与实际情况基本吻合,并且无须对减速器进行拆解,可以为摆线针轮传动设计和优化提供必要的参考数据。
In response to the problems of no suitable constraint conditions in the optimization process of tooth profile modification of cycloidal pin wheel transmission
difficulty in determining the modification amount of cycloidal gear tooth profile in reverse engineering
and the inability to obtain the meshing interval when studying the characteristics of cycloidal pin wheel transmission
research has been conducted on the method for determining the meshing intervals of cycloidal gears. Firstly
the stiffness analysis is performed to determine the main components that affect the stiffness. Then
through the contact stiffness analysis of the key components
the torsional stiffness model of the needle roller bearing
the tapered roller bearing and the meshing point of the cycloid are established respectively.On this basis
the torsional stiffness equation of the cycloid with needle roller bearings
tapered roller bearings and with the torsion angle of the whole machine as variables is deduced.Finally
according to the continuity principle of meshing points
all the meshing intervals whose sum of torsional stiffness of meshing points is approximately equal to the torsional stiffness of cycloidal wheels are calculated
and according to the principle that the initial meshing point of cycloidal wheels does not change with the increase of load
the feasible meshing intervals under different loads are finally screened. The analysis results of this method are basically consistent with the actual situation
and there is no need to disassemble the reducer
which can provide necessary reference data for the design and optimization of cycloid pin gear transmission.
摆线针轮传动扭转刚度啮合区间工业机器人
Cycloid pin gear transmissionTorsional stiffnessMeshing intervalIndustrial robot
SAHU S,CHOUDHURY B B,BISWAL B B.A vibration analysis of a 6 axis industrial robot using FEA[J].Materials Today:Proceedings,2017,4(2):2403-2410.
STENMARK M,MALEC J.Knowledge-based instruction of manipulation tasks for industrial robotics[J].Robotics and Computer-Integrated Manufacturing,2015,33:56-67.
WANG J N,GU J J,YAN Y H.Study on the relationship between the stiffness of RV reducer and the profile modification method of cycloid-pin wheel[J].Intelligent Robotics and Applications,2016:721-735.
陆龙生,张飞翔,唐恒,等.基于优化承载能力的RV减速器摆线齿轮齿廓的等距-移距修形[J].中国机械工程,2019,30(17):2022-2029.
LU Longsheng,ZHANG Feixiang,TANG Heng,et al.Equidistant & radial-moving modification of cycloidal gear tooth profiles used in RV reducer based on optimized carrying capacity[J].China Mechanical Engineering,2019,30(17):2022-2029.
丁国龙,秦园,明廷伯,等.基于接触应力均化的摆线轮修形方法[J].中国机械工程,2019,30(9):1081-1089.
DING Guolong,QIN Yuan,MING Tingbo,et al.Modification method of cycloidal gears based on contact stress equalization[J].China Mechanical Engineering,2019,30(9):1081-1089.
于影,于波,陈建新,等.摆线针轮行星减速器的优化设计[J].哈尔滨工业大学学报,2002,34(4):493-496.
YU Ying,YU Bo,CHEN Jianxin,et al.Optimal design of cycloid cam planetary speed reducer[J].Journal of Harbin Institute of Technology,2002,34(4):493-496.
陆龙生,张飞翔,万珍平,等.基于回差优化的RV减速器摆线轮齿廓修形[J].华南理工大学学报(自然科学版),2018,46(9):1-8.
LU Longsheng,ZHANG Feixiang,WAN Zhenping,et al.Cycloidal gear tooth profile modification of RV reducer based on backlash optimization[J].Journal of South China University of Technology(Natural Science Edition),2018,46(9):1-8.
张大卫,王刚,黄田,等.RV减速机动力学建模与结构参数分析[J].机械工程学报,2001,37(1):69-74.
ZHANG Dawei,WANG Gang,HUANG Tian,et al.Dynamic formulation of RV reducer and analysis of structural parameters[J].Journal of Mechanical Engineering,2001,37(1):69-74.
郑钰馨,奚鹰,卜王辉,等.RV减速器5自由度纯扭转模型非线性特性分析[J].浙江大学学报(工学版),2018,52(11):2098-2109.
ZHENG Yuxin,XI Ying,BU Wanghui,et al.Nonlinear characteristic analysis of 5 degree of freedom pure torsional model of RV reducer[J].Journal of Zhejiang University(Engineering Science),2018,52(11):2098-2109.
吴昊.滚动轴承动特性及轴承-转子系统动力学模型研究[D].上海:华东理工大学,2011:35-36.
WU Hao.Research on the dynamic characteristics of rolling element bearings and the dynamic model of bearing rotor system[D].Shanghai:East China University of Science and Technology,2011:35-36.
王刚,郭茂林.航天航空滚动轴承刚度[J].哈尔滨工业大学学报,2001,33(5):644-645.
WANG Gang,GUO Maolin.Stiffness of aerospace rolling bearings[J].Journal of Harbin Institute of Technology,2001,33(5):644-645.
LIU J Y,MASTUMURA S,CHEN B K,et al.Torsional stiffness calculation of double-enveloping cycloid drive[J].Journal of Advanced Mechanical Design,Systems,and Manufacturing,2012,6(1):2-14.
朱孝录.齿轮传动设计手册[M].北京:化学工业出版社,2005:821-840.
ZHU Xiaolu.Manual of gear drive design[M].Beijing:Chemical Industry Press,2005:821-840.
LI S T.Design and strength analysis methods of the trochoidal gear reducers[J].Mechanism and Machine Theory,2014,81:140-154.
王爱林,洪玉芳,汪久根.滚针轴承接触分析[J].轴承,2011(11):1-4.
WANG Ailin,HONG Yufang,WANG Jiugen.Analysis on contact of needle roller[J].Bearing,2011(11):1-4.
0
浏览量
30
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构