浏览全部资源
扫码关注微信
太原科技大学 电子信息工程学院, 山西 太原 030024
郭燕飞(1979— ),男,山西吕梁人,博士,讲师;研究方向为机械设备故障诊断、结构健康状态检测、信号处理方法;guoyanfei@tyust.edu.cn。
纸质出版日期:2023-05-15,
收稿日期:2022-03-26,
修回日期:2022-05-08,
扫 描 看 全 文
郭燕飞,陈高华,王清华.基于广义变分模式分解的滚动轴承故障微弱特征提取[J].机械传动,2023,47(05):150-157.
Guo Yanfei,Chen Gaohua,Wang Qinghua.Weak Feature Extraction of Rolling Bearing Fault Based on Generalized Variational Mode Decomposition[J].Journal of Mechanical Transmission,2023,47(05):150-157.
郭燕飞,陈高华,王清华.基于广义变分模式分解的滚动轴承故障微弱特征提取[J].机械传动,2023,47(05):150-157. DOI: 10.16578/j.issn.1004.2539.2023.05.023.
Guo Yanfei,Chen Gaohua,Wang Qinghua.Weak Feature Extraction of Rolling Bearing Fault Based on Generalized Variational Mode Decomposition[J].Journal of Mechanical Transmission,2023,47(05):150-157. DOI: 10.16578/j.issn.1004.2539.2023.05.023.
针对变分模式分解(Variational Mode Decomposition,VMD)算法在微弱特征分量按需提取方面存在的不足,提出采用广义变分模式分解(Generalized Variational Mode Decomposition,GVMD)算法提取滚动轴承故障微弱特征。GVMD算法具有优良的频域多尺度定频分解性能,算法频谱分解位置和频域分解尺度可由先验中心频率和尺度参数灵活控制,实现按需分解。仿真和实验分析结果表明,与VMD算法相比,GVMD算法能够充分利用轴承故障频率信息和带宽信息,按需准确提取轴承故障微弱特征分量;且具有较强的噪声鲁棒性。
Aiming at the deficiency of variational mode decomposition (VMD) in on-demand extraction of weak feature components
a generalized VMD (GVMD) is proposed to extract the weak features of rolling bearing faults. GVMD has excellent multi-scale and fixed frequency decomposition performance in the frequency domain. The spectrum decomposition positions and frequency domain decomposition scales of the algorithm can be flexibly dominated by prior center frequencies and scale parameters to realize on-demand decomposition. The simulation and experimental results show that
compared with VMD
GVMD can accurately extract weak feature components of bearing faults as desired by taking full advantage of bearing fault frequency information and bandwidth information
and the algorithm is robust to noise.
变分模式分解滚动轴承故障微弱信号提取按需分解
Variational mode decompositionRolling bearing faultWeak signal extractionOn-demand decomposition
孟涛.齿轮与滚动轴承故障的振动分析与诊断[D].西安:西北工业大学,2003:5-7.
MENG Tao.Vibration analysis and diagnosis on the fault of the gear and rolling element bearing[D].Xi'an:Northwestern Polytechnical University,2003:5-7.
陈保家,严文超,吴志平,等.基于小波降噪与RSSD的滚动轴承故障特征提取技术研究[J].机械传动,2016,40(5):9-13.
CHEN Baojia,YAN Wenchao,WU Zhiping,et al.Research of the rolling bearing fault feature extraction technology based on the wavelet noise reduction and RSSD[J].Journal of Mechanical Transmission,2016,40(5):9-13.
王晓冬,何正嘉,訾艳阳.滚动轴承故障诊断的多小波谱峭度方法[J].西安交通大学学报,2010,44(3):77-81.
WANG Xiaodong,HE Zhengjia,ZI Yanyang.Spectral kurtosis of multiwavelet for fault diagnosis of rolling bearing[J].Journal of Xi'an Jiaotong University,2010,44(3):77-81.
刘柯欣,孙虎儿,梁富旺.基于TVF-EMD和TEO的滚动轴承微弱故障特征提取[J].机械传动,2021,45(3):165-170.
LIU Kexin,SUN Huer,LIANG Fuwang.Feature extraction of weak fault of rolling bearing based on TVF-EMD and TEO[J].Journal of Mechanical Transmission,2021,45(3):165-170.
别锋锋,谷晟,庞明军,等.基于CEEMDAN-DRT的滚动轴承故障诊断方法研究[J].机械传动,2020,44(4):158-164.
BIE Fengfeng,GU Sheng,PANG Mingjun,et al.Research of fault diagnosis method of rolling bearing based on CEEMDAN-DRT[J].Journal of Mechanical Transmission,2020,44(4):158-164.
张西宁,李霖,刘书语,等.基于能量峰定位的经验小波变换及在轴承微弱故障诊断中的应用[J].西安交通大学学报,2021,55(8):1-8.
ZHANG Xining,LI Lin,LIU Shuyu,et al.Empirical wavelet transform based on energy peak location and its application in bearing weak fault diagnosis[J].Journal of Xi'an Jiaotong University,2021,55(8):1-8.
刘畅,王衍学,杨建伟.基于FOA的变分模态分解在轴承故障诊断中的应用[J].机械传动,2020,44(5):146-154.
LIU Chang,WANG Yanxue,YANG Jianwei.Application of variational mode decomposition based on the FOA and in bearing fault diagnosis[J].Journal of Mechanical Transmission,2020,44(5):146-154.
GUO Y F,ZHANG Z S.Generalized variational mode decomposition:a multiscale and fixed-frequency decomposition algorithm[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-13.
GUO Y F,ZHANG Z S,GONG T,et al.Generalized variational mode decomposition for interlayer slipping detection of viscoelastic sandwich cylindrical structures[J].Measurement Science and Technology,2018,29(9):09500101-09500113.
GUO Y F,ZHANG Z S,YANG W Z,et al.Early bolt looseness state identification via generalized variational mode decomposition and similarity index[J].Journal of Mechanical Science and Technology,2021,35(3):861-873.
BOYD S,PARIKH N,CHU E,et al.Distributed optimization and statistical learning via the alternating direction method of multipliers[J].Foundations and Trends in Machine Learning,2010,3(1):1-122.
0
浏览量
16
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构