浏览全部资源
扫码关注微信
1.南昌航空大学 飞行器工程学院, 江西 南昌 330063
2.南昌航空大学 通航学院, 江西 南昌 330063
刘世豪(1999— ),男,江西南昌人,硕士研究生;研究方向为故障诊断;523112232@qq.com。
王细洋(1967— ),男,江西湖口人,教授,硕士研究生导师;研究方向为故障诊断、先进制造等;838796648@qq.com。
纸质出版日期:2023-05-15,
收稿日期:2022-03-18,
修回日期:2022-04-26,
扫 描 看 全 文
刘世豪,王细洋,龚廷恺.基于深度迁移学习的齿轮故障诊断方法[J].机械传动,2023,47(05):134-142.
Liu Shihao,Wang Xiyang,Gong Tingkai.Gear Fault Diagnosis Method Based on Deep Transfer Learning[J].Journal of Mechanical Transmission,2023,47(05):134-142.
刘世豪,王细洋,龚廷恺.基于深度迁移学习的齿轮故障诊断方法[J].机械传动,2023,47(05):134-142. DOI: 10.16578/j.issn.1004.2539.2023.05.021.
Liu Shihao,Wang Xiyang,Gong Tingkai.Gear Fault Diagnosis Method Based on Deep Transfer Learning[J].Journal of Mechanical Transmission,2023,47(05):134-142. DOI: 10.16578/j.issn.1004.2539.2023.05.021.
针对齿轮故障样本欠缺问题,提出一种基于Hilbert-Huang谱和预训练VGG16模型的迁移学习故障诊断方法。对振动信号进行经验模态分解(Empirical Mode Decomposition,EMD)得到本征模态函数(Intrinsic Mode Function,IMF),同时取相关系数最大的IMF做Hilbert变换,获取时频谱;利用预训练VGG16提取变负载下和各健康状态下齿轮的Hilbert-Huang谱图像特征;采用全局均值池化层取代VGG16模型部分全连接层,进行分类输出。实验结果表明,在少量的样本数据下,该方法的齿轮故障诊断准确率达到98.86%,优于TLCNN和Tran VGG-19等迁移学习方法,证明了该方法在齿轮故障诊断中具有一定研究价值。
Aiming at the problem of insufficient gear fault samples
a fault diagnosis method of transfer learning based on Hilbert-Huang spectrum and pre-trained VGG16 model is proposed. Firstly
the intrinsic mode function (IMF) is obtained by Empirical Mode Decomposition (EMD) of vibration signals
and the time spectrum is obtained by Hilbert transform of IMF with the largest correlation coefficient. Secondly
pre-trained VGG16 is used to extract Hilbert-Huang spectrum image features of gears under varying loads and under various health conditions. Finally
the global average pooling layer is used to replace partial full connection layer of VGG16 model for classification output. Experimental results show that with a small amount of sample data
the accuracy of gear fault diagnosis reaches 98.86%
which is better than the transfer learning methods such as TLCNN and Tran VGG-19. It is proved that the method presented in this paper has some research value in gear fault diagnosis.
迁移学习VGG16模型Hilbert-Huang谱齿轮故障诊断全局均值池化
Transfer learningVGG16Hilbert-Huang spectrumGear fault diagnosisGlobal average pooling
WANG Y,YANG S,SANCHEZ R V.Gearbox fault diagnosis based on a novel hybrid feature reduction method[J].IEEE Access,2018(6):75813-75823.
LI C,ZHANG S H,QIN Y,et al.A systematic review of deep transfer learning for machinery fault diagnosis[J].Neurocomputing,2020,407:121-135.
AN Z H,LI S M,WANG J R,et al.A novel bearing intelligent fault diagnosis framework under time-varying working conditions using recurrent neural network[J].ISA Transactions,2020,100:155-170.
SHEN C Q,XIE J Q,WANG D,et al.Improved hierarchical adaptive deep belief network for bearing fault diagnosis[J].Applied Sciences,2019,9(16):3374.
胡茑庆,陈徽鹏,程哲,等.基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J].机械工程学报,2019,55(7):9-18.
HU Niaoqing,CHEN Huipeng,CHENG Zhe,et al.Fault diagnosis for planetary gearbox based on EMD and deep convolutional neural networks[J].Journal of Mechanical Engineering,2019,55(7):9-18.
LIU C,CHENG G,CHEN X H,et al.Planetary gears feature extraction and fault diagnosis method based on VMD and CNN[J].Sensors,2018,18(5):1523.
CAO P,ZHANG S L,TANG J.Preprocessing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learning[J].IEEE Access,2018,6:26241-26253.
GOPALAKRISHNAN K,KHAITAN S K,CHOUDHARY A,et al.Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection[J].Construction and Building Materials,2017,157:322-330.
KENSERT A,HARRISON P J,SPJUTH O.Transfer learning with deep convolutional neural networks for classifying cellular morphological changes[J].SLAS Discovery,2019,24(4):466-475.
LI X H,GRANDVALET Y,DAVOINE F,et al.Transfer learning in computer vision tasks:remember where you come from[J].Image and Vision Computing,2020,93(C):103853.
RUDER S,PETERS M E,SWAYAMDIPTA S,et al.Transfer learning in natural language processing[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Tutorials,2019:15-18.
YANG B,LEI Y G,JIA F,et al.An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings[J].Mechanical Systems and Signal Processing,2019,122:692-706.
HAN T,LIU C,WU R,et al.Deep transfer learning with limited data for machinery fault diagnosis[J].Applied Soft Computing Journal,2021,103:107150.
ZHAO B,ZHANG X M,LI H,et al.Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions[J].Knowledge-Based Systems,2020,199(C):105971.
SHAO S Y,MCALEER S,YAN R Q,et al.Highly accurate machine fault diagnosis using deep transfer learning[J].IEEE Transactions on Industrial Informatics,2019,15(4):2446-2455.
SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].Computer Science,2014:1409-1556.
HE K M,ZHANG X Y,REN S Q,et al.Delving deep into rectifiers:surpassing human-level performance on imagenet classification[C]//2015 IEEE International Conference on Computer Vision (ICCV),2015:1026-1034.
LU T,YU F,HAN B K,et al.A generic intelligent bearing fault diagnosis system using convolutional neural networks with transfer learning[J].IEEE Access,2020,8:164807-164814.
MA P,ZHANG H L,FAN W H,et al.A novel bearing fault diagnosis method based on 2D image representation and transfer learning-convolutional neural network[J].Measurement Science and Technology,2019,30(5):055402.
揭震国,王细洋,龚廷恺.基于深度学习与子域适配的齿轮故障诊断[J].中国机械工程,2021,32(22):2716-2723.
JIE Zhenguo,WANG Xiyang,GONG Tingkai.Gear fault diagnosis based on deep learning and subdomain adaptation[J].China Mechanical Engineering,2021,32(22):2716-2723.
WEN L,LI X,LI X Y,et al.A new transfer learning based on VGG-19 network for fault diagnosis[C]//2019 IEEE 23rd International Conference on Computer Supported Cooperative Work in Design (CSCWD).IEEE,2019:205-209.
0
浏览量
25
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构