浏览全部资源
扫码关注微信
1.太原理工大学 机械与运载工程学院, 山西 太原 030024
2.煤矿综采装备山西省重点实验室, 山西 太原 030024
张搏文(1998— ),男,陕西宜川人,硕士在读;研究方向为深度学习与机械故障诊断;zbwcug@163.com。
庞新宇(1976— ),女,山西文水人,博士,教授;研究方向为机械故障诊断;typangxy@163.com。
纸质出版日期:2023-03-15,
收稿日期:2022-03-01,
修回日期:2022-05-14,
扫 描 看 全 文
张搏文,庞新宇,关重阳.基于DPD-1DCNN的行星齿轮箱故障诊断方法研究[J].机械传动,2023,47(03):113-119.
Zhang Bowen,Pang Xinyu,Guan Chongyang.Research on Fault Diagnosis Method of Planetary Gearboxes Based on DPD-1DCNN[J].Journal of Mechanical Transmission,2023,47(03):113-119.
张搏文,庞新宇,关重阳.基于DPD-1DCNN的行星齿轮箱故障诊断方法研究[J].机械传动,2023,47(03):113-119. DOI: 10.16578/j.issn.1004.2539.2023.03.016.
Zhang Bowen,Pang Xinyu,Guan Chongyang.Research on Fault Diagnosis Method of Planetary Gearboxes Based on DPD-1DCNN[J].Journal of Mechanical Transmission,2023,47(03):113-119. DOI: 10.16578/j.issn.1004.2539.2023.03.016.
基于数据驱动的故障诊断方法已被广泛应用于旋转机械零部件故障诊断领域。目前,大多数诊断方法主要依赖于定长数据分割产生的大量数据,但分割的数据通常为短周期的小片段信号,而实际长周期冗余信号由于数据尺度不匹配,无法直接作为测试样本进行故障识别。针对以上不足,提出了一种新的基于数据概率密度与一维卷积神经网络(Data Probability Density and One-Dimensional Convolutional Neural Network,DPD-1DCNN)的故障诊断方法,其具有两个特点:①提取信号的密度特征可抵抗数据的冗余;②适应不同长度的冗余信号可作为诊断模型的输入。该方法采用DDS试验台产生的行星齿轮箱故障数据进行了验证;其在保证高诊断精度的同时,又增强了诊断模型的适应性。
Data-driven fault diagnosis methods have been widely used in the field of fault diagnosis of rotating machinery components. However
most of the current research methods mainly rely on a large amount of data generated by fixed-length data segmentation. The segmented data is usually a short-period small segment signal
and the actual long-period redundant signal cannot be directly used as a test sample for fault identification. In view of the above shortcomings
a new fault diagnosis method based on data probability density and one-dimensional convolutional neural network (DPD-1DCNN) is proposed. It has two characteristics: ①the density feature of the extracted signal resists the redundancy of the data; ②adapt redundant signals of different lengths as input to the diagnostic model. The method is verified on the planetary gearbox fault data generated by the DDS test bench
which not only ensures high diagnostic accuracy
but also enhances the adaptability of the diagnostic model.
行星齿轮箱数据概率密度一维卷积神经网络故障诊断
Planetary gearboxData probability density1DCNNFault Diagnosis
雷亚国,何正嘉,林京,等.行星齿轮箱故障诊断技术的研究进展[J].机械工程学报,2011,47(19):59-67.
LEI Yaguo,HE Zhengjia,LIN Jing,et al.Research progress of planetary gearbox fault diagnosis technology[J].Journal of Mechanical Engineering,2011,47(19):59-67.
冯志鹏,赵镭镭,褚福磊.行星齿轮箱齿轮局部故障振动频谱特征[J].中国电机工程学报,2013,33(5):119-127.
FENG Zhipeng,ZHAO Leilei,CHU Fulei.The vibration spectrum characteristics of planetary gearbox gear local fault[J].Proceedings of the CSEE,2013,33(5):119-127.
祝文颖,冯志鹏.基于改进经验小波变换的行星齿轮箱故障诊断[J].仪器仪表学报,2016,37(10):2193-2201.
ZHU Wenying,FENG Zhipeng.Fault diagnosis of planetary gearbox based on improved empirical wavelet transform[J].Chinese Journal of Scientific Instrument,2016,37(10):2193-2201.
门兰城,庞新宇,李峰,等.基于电机电流经验模态分解的行星轮故障诊断[J].机械设计与制造,2021(4):39-42.
MEN Lancheng,PANG Xinyu,LI Feng,et al.Fault diagnosis of planetary gear based on empirical mode decomposition of motor current[J].Machinery Design and Manufacture,2021(4):39-42.
PANG X,XUE X,JIANG W,et al.An investigation into fault diagnosis of planetary gearboxes using a bispectrum convolutional neural network[J].IEEE/ASME Transactions on Mechatronics,2020,26(4):2027-2037.
李晗,萧德云.基于数据驱动的故障诊断方法综述[J].控制与决策,2011,26(1):1-9.
LI Han,XIAO Deyun.Overview of data-driven fault diagnosis methods[J].Control and Decision,2011,26(1):1-9.
ZHANG D,ZHOU T.Deep convolutional neural network using transfer learning for fault diagnosis[J].IEEE Access,2021,9:43889-43897.
CHEN X,ZHANG B,GAO D.Bearing fault diagnosis base on multi-scale CNN and LSTM model[J].Journal of Intelligent Manufacturing,2020,32(4):971-987.
WEN L,LI X,GAO L,et al.A new convolutional neural network-based data-driven fault diagnosis method[J].IEEE Transactions on Industrial Electronics,2018,65(7):5990-5998.
周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251.
ZHOU Feiyan,JIN Linpeng,DONG Jun.Review of convolutional neural network research[J].Chinese Journal of Computers,2017,40(6):1229-1251.
ZHANG W,LI C,PENG G,et al.A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load[J].Mechanical Systems and Signal Processing,2018,100:439-453.
薛璇怡,庞新宇.基于1-DCNN的行星齿轮箱故障诊断[J].机械传动,2020,44(11):127-133.
XUE Xuanyi,PANG Xinyu.Fault diagnosis of planetary gearbox based on 1-DCNN[J].Journal of Mechanical Transmission,2020,44(11):127-133.
WU C,JIANG P,DING C,et al.Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network[J].Computers in Industry,2019,108:53-61.
吴春志,江鹏程,冯辅周,等.基于一维卷积神经网络的齿轮箱故障诊断[J].振动与冲击,2018,37(22):51-56.
WU Chunzhi,JIANG Pengcheng,FENG Fuzhou,et al.Gearbox fault diagnosis based on one-dimensional convolutional neural network[J].Journal of Vibration and Shock,2018,37(22):51-56.
QIU G,GU Y,CAI Q.A deep convolutional neural networks model for intelligent fault diagnosis of a gearbox under different operational conditions[J].Measurement,2019,145:94-107.
安晶,艾萍,徐森,等.一种基于一维卷积神经网络的旋转机械智能故障诊断方法[J].南京大学学报(自然科学),2019,55(1):133-142.
AN Jing,AI Ping,XU Sen,et al.An intelligent fault diagnosis method for rotating machinery based on one-dimensional convolutional neural network[J].Journal of Nanjing University(Natural Science),2019,55(1):133-142.
YU J,ZHANG C,WANG S.Multichannel one-dimensional convolutional neural network-based feature learning for fault diagnosis of industrial processes[J].Neural Computing and Applications,2020,33(8):3085-3104.
LIANG H,ZHAO X.Rolling bearing fault diagnosis based on one-dimensional dilated convolution network with residual connection[J].IEEE Access,2021,9:31078-31091.
叶壮,余建波.基于多通道一维卷积神经网络特征学习的齿轮箱故障诊断方法[J].振动与冲击,2020,39(20):55-66.
YE Zhuang,YU Jianbo.Gearbox fault diagnosis method based on multi-channel one-dimensional convolutional neural network feature learning[J].Journal of Vibration and Shock,2020,39(20):55-66.
李允公,孔祥娜,高玉勇.基于两被联件振动信号概率密度和PCA的螺栓松动识别方法研究[J].振动与冲击,2015,34(1):63-67.
LI Yungong,KONG Xiangna,GAO Yuyong.Research on bolt loosening identification method based on vibration signal probability density and PCA of two connected parts[J].Journal of Vibration and Shock,2015,34(1):63-67.
周挺,杨军,周强明,等.基于改进LightGBM的电力系统暂态稳定评估方法[J].电网技术,2019,43(6):1931-1940.
ZHOU Ting,YANG Jun,ZHOU Qiangming,et al.Transient stability evaluation method of power system based on improved LightGBM[J].Power System Technology,2019,43(6):1931-1940.
WANG N,ZHANG G,PANG W,et al.Novel monitoring method for material removal rate considering quantitative wear of abrasive belts based on LightGBM learning algorithm[J].The International Journal of Advanced Manufacturing Technology,2021,114(11):3241-3253.
0
浏览量
18
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构