浏览全部资源
扫码关注微信
西安工程大学 机电工程学院, 陕西 西安 710048
赵小惠(1970— ),女,陕西西安人,教授,博士;研究方向为智能制造系统理论及应用;tq990205@163.com。
纸质出版日期:2023-02-15,
收稿日期:2022-06-07,
修回日期:2022-06-27,
扫 描 看 全 文
赵小惠,谭琦,胡胜等.基于LMD云模型与PSO-KELM的齿轮箱故障诊断[J].机械传动,2023,47(02):157-163.
Zhao Xiaohui,Tan Qi,Hu Sheng,et al.Gearbox Fault Diagnosis Based on the LMD Cloud Model and PSO-KELM[J].Journal of Mechanical Transmission,2023,47(02):157-163.
赵小惠,谭琦,胡胜等.基于LMD云模型与PSO-KELM的齿轮箱故障诊断[J].机械传动,2023,47(02):157-163. DOI: 10.16578/j.issn.1004.2539.2023.02.021.
Zhao Xiaohui,Tan Qi,Hu Sheng,et al.Gearbox Fault Diagnosis Based on the LMD Cloud Model and PSO-KELM[J].Journal of Mechanical Transmission,2023,47(02):157-163. DOI: 10.16578/j.issn.1004.2539.2023.02.021.
由于齿轮箱故障振动信号具有非平稳性与不确定性的特点,导致齿轮箱故障诊断精度较低。针对该问题提出一种基于局部均值分解(LMD)云模型特征提取结合粒子群优化(PSO)核极限学习机(KELM)的齿轮箱故障诊断方法。首先,将故障振动信号用LMD分解得到若干PF分量,并利用相关系数原则筛选出相关性较高的PF分量;其次,在云模型中输入筛选后的PF分量,采用逆向云发生器对特征向量进行提取并输入到PSO-KELM中进行故障诊断;最后,利用QPZZ-Ⅱ实验台齿轮箱实测数据对该方法进行了性能分析。结果表明,该方法识别精度为97.65%,与多种方法进行对比,该方法具备最佳识别性能。
The characteristics of non-smoothness and uncertainty of gearbox fault vibration signal lead to the low accuracy of gearbox fault diagnosis. To address this problem
a gearbox fault diagnosis method based on local mean decomposition (LMD) cloud model feature extraction combined with particle swarm optimization (PSO) kernel extreme learning machine (KELM) is proposed. Firstly
the fault vibration signal is decomposed by LMD to obtain several PF components
and the PF components with higher correlation are screened out using the correlation coefficient principle. Secondly
the screened PF components are input into the cloud model
and the feature vectors are extracted using the inverse cloud generator and input into PSO-KELM for fault diagnosis. Finally
the performance of the method is analyzed using the measured data of the QPZZ-Ⅱ test-bed gearbox. The results show that the recognition accuracy of the method is 97.65%
and compared with various methods this method has the best recognition performance.
齿轮箱故障诊断局部均值分解云模型粒子群优化核极限学习机
GearboxFault diagnosisLocal mean decompositionCloud modelParticle swarm optimization kernel extreme learning machine
石明江,罗仁泽,付元华.小波和能量特征提取的旋转机械故障诊断方法[J].电子测量与仪器学报,2015,29(8):1114-1120.
SHI Mingjiang,LUO Renze,FU Yuanhua.Fault diagnosis method of rotating machinery by wavelet and energy feature extraction[J].Journal of Electronic Measurement and Instrumentation,2015,29(8):1114-1120.
DONG Y,NA J,WANG S,et al.Robust adaptive parameter estimation and tracking control for hydraulic servo systems[C]//2019 Chinese Control Conference(CCC),IEEE,2019:2468-2473.
SUN R,YANG Z,CHEN X,et al.Gear fault diagnosis based on the structured sparsity time-frequency analysis[J].Mechanical Systems and Signal Processing,2018,102:346-363.
杨斌,张家玮,王建国,等.CEEMD和MCKD的滚动轴承早期故障特征提取[J].机械科学与技术,2018,37(12):1936-1943.
YANG Bin,ZHANG Jiawei,WANG Jianguo,et al.CEEMD and MCKD for early fault feature extraction of rolling bearings[J].Mechanical Science and Technology for Aerospace Engineering,2018,37(12):1936-1943.
HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London,Series A,1998,454:903-995.
SMITH J S.The local mean decomposition and its application to EEG perception data[J].Journal of the Royal Society Interface,2005,2(5):443-454.
张玉学,潘宏侠.基于LMD近似熵和PSO-ELM的齿轮箱故障诊断[J].机械传动,2017,41(8):109-113.
ZHANG Yuxue,PAN Hongxia.Fault diagnosis of gearbox based on LMD approximate entropy and PSO-ELM[J].Journal of Mechanical Transmission,2017,41(8):109-113.
张宁,魏秀业,徐晋宏.基于LMD样本熵与ELM的行星齿轮箱故障诊断[J].机械传动,2020,44(4):152-157.
ZHANG Ning,WEI Xiuye,XU Jinhong.Fault diagnosis of planetary gearbox based on LMD sample entropy and ELM[J].Journal of Mechanical Transmission,2020,44(4):152-157.
赵荣珍,马森财,吴耀春.云模型和集成极限学习机相结合的滚动轴承故障诊断方法[J].兰州理工大学学报,2021,47(4):33-39.
ZHAO Rongzhen,MA Sencai,WU Yaochun.A rolling bearing fault diagnosis method combining cloud model and integrated limit learning machine[J].Journal of Lanzhou University of Technology,2021,47(4):33-39.
田松峰,魏言,郁建雄,等.基于变分模态分解云模型和优化LSSVM的汽轮机振动故障诊断[J].动力工程学报,2019,39(10):818-825.
TIAN Songfeng,WEI Yan,YU Jianxiong,et al.Turbine vibration fault diagnosis based on variational modal decomposition cloud model and optimized LSSVM[J].Journal of Chinese Society of Power Engineering,2019,39(10):818-825.
谈恩民,李峰.结合LMD云模型和ABC-LSSVM的模拟电路故障诊断[J].电子测量与仪器学报,2020,34(2):80-87.
TAN Enmin, LI Feng.Combining LMD cloud model and ABC-LSSVM for fault diagnosis of analog circuits[J].Journal of Electronic Measurement and Instrumentation,2020,34(2):80-87.
谈恩民,张欣然,王存存.云模型改进萤火虫算法优化的模拟电路故障诊断[J].电测与仪表,2019,56(15):61-68.
TAN Enmin,ZHANG Xinran,WANG Cuncun.Cloud model improvement of firefly algorithm optimization for analog circuit fault diagnosis[J].Electrical Measurement and Instrumentation,2019,56(15):61-68.
JIANG Y J,JIANG J G,ZHANG Y K.A novel fuzzy multi-objective model using adaptive genetic algorithm based on cloud theory for service restoration of shipboard power systems[J].IEEE Transactions on Power Systems,2018,27(2):612-620.
陈绍炜,柳光峰,冶帅.基于核极限学习机的模拟电路故障诊断研究[J].西北工业大学学报,2015,33(2):290-294.
CHEN Shaowei,LIU Guangfeng,YE Shuai.Research on fault diagnosis of analog circuits based on nuclear limit learning machine[J].Journal of Northwestern Polytechnical University,2015,33(2):290-294.
HUANG G B.An insight into extreme learning machines:random neurons,random features and kernels[J].Cognitive Computation,2014,6(3):376-390.
杨锡运,关文渊,刘玉奇,等.基于粒子群优化的核极限学习机模型的风电功率区间预测方法[J].中国电机工程学报,2015,35(S1):146-153.
YANG Xiyun,GUAN Wenyuan,LIU Yuqi,et al.Wind power interval prediction method based on particle swarm optimization with kernel limit learning machine model[J].Proceedings of the CSEE,2015,35(S1):146-153.
舒悦,谢传东,何明,等.往复压缩机环状气阀振动信号的LMD故障特征提取方法研究[J].流体机械,2019,47(11):13-18.
SHU Yue,XIE Chuandong,HE Ming,et al.Research on LMD fault feature extraction method for annular valve vibration signal of reciprocating compressor[J].Fluid Machinery,2019,47(11):13-18.
郑小霞,蒋海生,刘静,等.基于变分模态分解与灰狼算法优化极限学习机的滚动轴承故障诊断[J].轴承,2021(9):48-53.
ZHENG Xiaoxia,JIANG Haisheng,LIU Jing,et al.Rolling bearing fault diagnosis based on variational modal decomposition with gray wolf algorithm optimized limit learning machine[J].Bearing,2021(9):48-53.
赵鹏,涂菁菁,杨锡运.基于PSO-KELM的风功率预测研究[J].电测与仪表,2020,57(11):24-29.
ZHAO Peng,TU Jingjing,YANG Xiyun.Research on wind power prediction based on PSO-KELM[J].Electrical Measurement and Instrumentation,2020,57(11):24-29.
LU H,DU B,LIU J,et al.A kernel extreme learning machine algorithm based on improved particle swarm optimization[J].Memetic Computing,2016,9(2):1-8.
高爽.齿轮故障特征参数提取及最佳特征参数选择研究[D].沈阳:沈阳航空航天大学,2017:20-23.
GAO Shuang.Research on gear fault feature parameter extraction and optimal feature parameter selection[D].Shenyang:Shenyang Aerospace University,2017:20-23.
0
浏览量
10
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构