浏览全部资源
扫码关注微信
1.合肥工业大学 机械工程学院, 安徽 合肥 230009
2.安徽省智能数控技术及装备工程实验室, 安徽 合肥 230009
3.合工大马鞍山博望自动化智能装备研究院, 安徽 马鞍山 243131
田晓青(1987— ),女,河北石家庄人,博士,副教授,博士生导师;研究方向为数控技术与数控装备、齿轮加工工艺及控制技术、3D打印技术、机床误差建模与补偿技术;tianxiaoqing@hfut.edu.cn。
韩江(1964— ),男,河南洛阳人,博士,教授,博士生导师;主要研究方向为智能制造及装备、现代数控技术与数控机床、齿轮精密制造技术;hanjiang626@126.com。
纸质出版日期:2023-02-15,
收稿日期:2022-01-22,
修回日期:2022-03-03,
扫 描 看 全 文
田晓青,李正兴,韩江等.基于齿轮时变啮合过程的修形齿面设计方法研究[J].机械传动,2023,47(02):70-78.
Tian Xiaoqing,Li Zhengxing,Han Jiang,et al.Research on the Design Method of the Modified Gear Tooth Surface Based on the Gear Time-varying Meshing Process[J].Journal of Mechanical Transmission,2023,47(02):70-78.
田晓青,李正兴,韩江等.基于齿轮时变啮合过程的修形齿面设计方法研究[J].机械传动,2023,47(02):70-78. DOI: 10.16578/j.issn.1004.2539.2023.02.009.
Tian Xiaoqing,Li Zhengxing,Han Jiang,et al.Research on the Design Method of the Modified Gear Tooth Surface Based on the Gear Time-varying Meshing Process[J].Journal of Mechanical Transmission,2023,47(02):70-78. DOI: 10.16578/j.issn.1004.2539.2023.02.009.
斜齿轮啮合过程中的理想齿面为渐开螺旋面,但在实际的服役过程中,由于齿轮受载、热变形以及支承变形等因素的影响,实际齿面与理想齿面存在一定的偏差,通常采用齿面修形的方法来减小由于位置偏差引起的齿面偏载及振动。现有的修形方式往往采用考虑载荷大小的公式法计算修形量,虽然能在一定程度上提高传动性能,但仍存在设计精度不高的问题。提出一种基于齿轮时变啮合过程的拓扑修形齿面设计方法,以此来提高齿轮副传动的啮合性能。首先,通过沿斜齿轮接触迹线划分齿面的方式对石川公式进行改进,建立斜齿轮副齿面时变刚度模型;然后,根据齿轮副的实际啮合过程建立6自由度动力学方程;最后,根据动力学方程计算的齿面综合变形量设计补偿齿面拓扑修形量,并进行了动力学仿真。通过与采用传统公式法设计的修形齿轮进行仿真对比,验证了提出方法的有效性。
The ideal tooth surface in the meshing process of helical gears is an involute helical surface
but in the actual service process
there is a certain deviation between the actual tooth surface and the ideal tooth surface due to the influence of gear load
thermal deformation and support deformation. The tooth surface modification method is usually used to reduce the tooth surface eccentric load and vibration caused by position deviation. The existing modification methods often use the formula method considering the size of the load to calculate the modification amount. Although it can improve the transmission performance to a certain extent
there is still the problem of low design accuracy. Thus
a topological modification tooth surface design method based on the time-varying meshing process of gears is proposed to improve the meshing performance of gear pair transmission. Firstly
Ishikawa formula is improved by dividing the tooth surface along the contact trace of helical gears
and the time-varying stiffness model of helical gear pair tooth surface is established; then
the six-degree-of-freedom dynamic equation is established according to the actual meshing process of the gear pair; finally
according to the comprehensive deformation of the tooth surface calculated by the dynamic equation
the topological modification of the compensated tooth surface is designed
and the dynamic simulation is carried out. Through the simulation comparison with the modified gear designed by the traditional formula method
the effectiveness of the proposed method is verified.
时变啮合刚度拓扑修形齿轮动力学
Time-varying meshing stiffnessTopological modificationGear dynamics
刘鹏祥.考虑连续展成磨齿工艺的拓扑修形齿轮设计方法研究[D].重庆:重庆大学,2017:2-3,12-13.
LIU Pengxiang.Research on the design method of topographical modification gears with continuous generating grinding process[D].Chongqing:Chongqing University,2017:2-3,12-13.
SHI J L,MA X G,XU C L,et al.Meshing stiffness analysis of gear using the Ishikawa method[J].Applied Mechanics and Materials,2013,2668(401/402/403):203-206.
BAHK C J,PARKER R G.Analytical investigation of tooth profile modification effects on planetary gear dynamics[J].Mechanism and Machine Theory,2013,70:298-319.
YU W N,MECHEFSKE C K,TIMUSK M.Influence of the addendum modification on spur gear back-side mesh stiffness and dynamics[J].Journal of Sound and Vibration,2017,389:183-201.
MARGIELEWICZ J,GASKA D,WOJNAR G.Numerical modelling of toothed gear dynamics[J].Scientific Journal of Silesian University of Technology.Series Transport,2017,97:105-115.
XIAO Z M,CAO J X,YU Y X,et al.Mathematical modeling and dynamic analysis of planetary gears system with time-varying parameters[J].Mathematical Problems in Engineering,2020(1):1-9.
RAVISHANKAR N C,SRIHARI P V.Development and simulation of non-linear gear dynamics model[J].Journal of Aerospace Engineering & Technology,2013,3(2):11-16.
车博文.齿轮传动系统动力学分析及减振方法研究[D].郑州:郑州大学,2020:9-11.
CHE Bowen.Dynamic analysis and vibration reduction method of gear transmission system[D].Zhengzhou:Zhengzhou University,2020:9-11.
李润方,王建军.齿轮系统动力学[M].北京:科学出版社,1997:86-97.
LI Runfang,WANG Jianjun.Gear system dynamics[M].Beijing:Science Press,1997:86-97.
宋乐民.齿形与齿轮强度[M].北京:国防工业出版社,1987:25-27.
SONG Lemin.Tooth profile and gear strength[M].Beijing:National Defense Industry Press,1987:25-27.
吴序堂.齿轮啮合原理[M].2版.西安:西安交通大学出版社,2009:84-88.
WU Xutang.Principle of gearing[M].2nd ed.Xi'an:Xi'an Jiaotong University Press,2009:84-88.
李润方.齿轮传动的刚度分析和修形方法[M].重庆:重庆大学出版社,1998:247-249.
LI Runfang.Stiffness analysis and modification method of gear transmission[M].Chongqing:Chongqing University Press,1998:247-249.
0
浏览量
20
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构