浏览全部资源
扫码关注微信
1.中国绿发投资集团有限公司, 北京 100020
2.都城伟业集团有限公司, 北京 100020
3.鲁能集团有限公司, 北京 100020
4.华北电力大学 电站能量传递转化与系统教育部重点实验室, 北京 102206
宫永立(1986— ),男,内蒙古赤峰人,硕士研究生,高级工程师;研究方向为数据分析与挖掘,设备故障诊断;2900958174@qq.com。
纸质出版日期:2023-01-15,
收稿日期:2022-03-12,
修回日期:2022-04-25,
扫 描 看 全 文
宫永立,彭迪康,冯涛等.基于FDEO与改进ACYCBD的风电机组轴承故障特征提取[J].机械传动,2023,47(01):163-169.
Gong Yongli,Peng Dikang,Feng Tao,et al.Fault Extraction of Wind Turbine Rolling Bearings Using FDEO and the Improved ACYCBD[J].Journal of Mechanical Transmission,2023,47(01):163-169.
宫永立,彭迪康,冯涛等.基于FDEO与改进ACYCBD的风电机组轴承故障特征提取[J].机械传动,2023,47(01):163-169. DOI: 10.16578/j.issn.1004.2539.2023.01.023.
Gong Yongli,Peng Dikang,Feng Tao,et al.Fault Extraction of Wind Turbine Rolling Bearings Using FDEO and the Improved ACYCBD[J].Journal of Mechanical Transmission,2023,47(01):163-169. DOI: 10.16578/j.issn.1004.2539.2023.01.023.
针对由于实际工况中风电机组轴承发生故障所采得的信号会受到变速变载的影响,造成故障特征难以提取的问题,提出了基于频域能量算子(Frequency domain energy operator,FDEO)与自适应最大2阶循环平稳盲解卷积(Adaptive maximum second order cyclostationarity blind deconvolution,ACYCBD)的风电机组轴承故障特征提取方法。首先,通过SCADA数据提供的高速轴转速平均速度对CMS(Condition monitoring system)系统采集的振动信号进行感兴趣的振动成分选择,并通过窄带滤波和FDEO对振动信号进行瞬时频率估计和阶次跟踪;其次,针对风电机组振源多、振动信号复杂的特点,对通过阶次跟踪后的角度域振动信号应用改进ACYCBD完成故障特征提取。工程应用分析结果表明,该方法能够准确有效地实现风电机组轴承特征的提取而不受到其他振源的影响。
Rolling bearings normally work under variable speed and load conditions
and their fault becomes hard to be extracted. In this study
for a method of extracting rolling bearing fault is proposed based on the frequency domain energy operator (FDEO) and an improved adaptive maximum second order cyclostationarity blind deconvolution (ACYCBD). Firstly
high speed shaft means the frequency provided by the SCADA system is used to find the optimal vibration component for further analysis. The instantaneous frequency of the vibration component is then estimated using FDEO for order tracking. Finally
for the purpose of addressing the problem such as multiple vibration components existing in a vibration signal collected from wind turbines
which may mask the vibration component of interest
the improved ACYCBD is then used to extract the fault feature. The industrial results show that the proposed method is able to extract the faulty feature at an early stage without the interference of other vibration sources.
风电机组轴承故障频域能量算子自适应最大2阶循环平稳盲解卷积
Wind turbineRolling bearing faultFrequency domain energy operatorAdaptive maximum second order cyclostationarity blind deconvolution
林京,赵明.变转速下机械设备动态信号分析方法的回顾与展望[J].中国科学:技术科学,2015,45(7):669-686.
LIN Jing,ZHAO Ming.Dynamic signal analysis for speed-varying machinery:a review[J].Scientia Sinica Technologyica,2015,45(7):669-686.
RANDALL R B,ANTONI J.Rolling element bearing diagnostics-a tutorial[J].Mechanical Systems and Signal Processing,2011,25(2):485-520.
PENG D,SMITH W A,RANDALL R B,et al.Speed estimation in planetary gearboxes:a method for reducing impulsive noise[J].Mechanical Systems and Signal Processing,2021,159(1/2):107786.
高冠琪,黄伟国,李宁,等.基于时频挤压和阶比分析的变转速轴承故障检测方法[J].振动与冲击,2020,39(3):205-210.
GAO Guanqi,HUANG Weiguo,LI Ning,et al.Fault detection method for varying rotating speed bearings based on time-frequency squeeze and order analysis[J].Journal of Vibration and Shock,2020,39(3):205-210.
曹书峰,朱忠奎,黄伟国,等.基于时频融合的转速估计及轴承故障特征提取研究[J].振动与冲击,2013,32(18):174-178.
CAO Shufeng,ZHU Zhongkui,HUANG Weiguo,et al.Speed estimation based on time-frequency fusion and its application in feature extraction of bearing fault[J].Journal of Vibration and Shock,2013,32(18):174-178.
任锦胜,杨苹.基于线性相位的风机齿轮箱无键相同步平均分析[J].可再生能源,2015,33(12):1840-1844.
REN Jinsheng,YANG Ping.Linear phase estimation based wind turbine gearbox time synchronous averaging without keyphasor[J].Renewable Energy Resources,2015,33(12):1840-1844.
COATS M D,RANDALL R B.Single and multi-stage phase demodulation based order-tracking[J].Mechanical Systems and Signal Processing,2014,44(1/2):86-117.
RANDALL R,SMITH W.Use of the teager kaiser energy operator to estimate machine speed[C]//PHM Society European Conference,2016:1-7.
BARSZCZ T,RANDALL R B.Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine[J].Mechanical Systems and Signal Processing,2009,23(4):1352-1365.
ENDO H,RANDALL R B.Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter[J].Mechanical Systems and Signal Processing,2006,21(2):906-919.
MCDONALD G L,ZHAO Q,ZUO M J.Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection[J].Mechanical Systems and Signal Processing,2012,33:237-255.
黄斯琪,郑近德,潘海洋,等.最大相关峭度反褶积与傅里叶分解方法相结合的滚动轴承故障诊断[J].机械科学与技术,2020,39(8):1163-1170.
HUANG Siqi,ZHENG Jinde,PAN Haiyang,et al.Rolling bearing fault diagnosis of maximum correlation kurtosis deconvolution combining with Fourier decomposition method[J].Mechanical Science and Technology for Aerospace Engineering,2020,39(8):1163-1170.
吕轩,胡占齐,周海丽,等.自适应最大相关峭度反褶积方法诊断齿轮轴承复合故障[J].农业工程学报,2019,35(12):48-57.
LÜ Xuan ,HU Zhanqi,ZHOU Haili,et al.Compound fault diagnosis method for gear bearing based on adaptive maximum correlated kurtosis deconvolution[J].Transactions of the Chinese Society of Agricultural Engineering,2019,35(12):48-57.
BUZZONI M,ANTONI J,D'ELIA G.Blind deconvolution based on cyclostationarity maximization and its application to fault identification[J].Journal of Sound and Vibration,2018,432:569-601.
ZHANG B,MIAO Y,LIN J,et al.Adaptive maximum second-order cyclostationarity blind deconvolution and its application for locomotive bearing fault diagnosis[J].Mechanical Systems and Signal Processing,2021,158:107736.
0
浏览量
11
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构