浏览全部资源
扫码关注微信
常州大学 机械工程学院, 江苏 常州 213164
谷晟(1992— ),男,江苏淮安人,硕士研究生;研究方向为机械设备状态检测与故障诊断,振动信号处理与分析;gushengxp@sina.cn。
纸质出版日期:2023-01-15,
收稿日期:2021-12-22,
修回日期:2022-02-09,
扫 描 看 全 文
谷晟,别锋锋,缪新婷等.基于改进型ESMD和动力学模型的齿轮箱冲击特征提取方法研究[J].机械传动,2023,47(01):155-162.
Gu Sheng,Bie Fengfeng,Miao Xinting,et al.Research on Gearbox Impact Feature Extraction Method Based on the Improved ESMD and Dynamics Model[J].Journal of Mechanical Transmission,2023,47(01):155-162.
谷晟,别锋锋,缪新婷等.基于改进型ESMD和动力学模型的齿轮箱冲击特征提取方法研究[J].机械传动,2023,47(01):155-162. DOI: 10.16578/j.issn.1004.2539.2023.01.022.
Gu Sheng,Bie Fengfeng,Miao Xinting,et al.Research on Gearbox Impact Feature Extraction Method Based on the Improved ESMD and Dynamics Model[J].Journal of Mechanical Transmission,2023,47(01):155-162. DOI: 10.16578/j.issn.1004.2539.2023.01.022.
齿轮箱振动信号具有非线性冲击特征,其有效特征信息易于被振动信号其他干扰成分所淹没。针对如何有效提取其冲击特征这一热点和难点问题,通过构建直齿锥齿轮动力学模型,研究其典型故障振动机理,提出了一种基于改进型极点对称模态分解(ESMD)和支持向量机(SVM)相结合的故障诊断方法。该方法通过改进型ESMD将振动信号自适应分解为多个IMF分量,然后利用最大峭度-包络谱指标选取一定量的分量并提取每个分量的奇异值,构建特征向量集合并输入SVM进行故障模式识别。动力学仿真模拟和齿轮箱实验研究表明,改进型ESMD-SVM法能够有效提取并识别齿轮箱故障信息。
The gearbox vibration signal contains nonlinear impact characteristics
and the significant feature information tends to be overwhelmed with other interference components. Aiming at the key issue of how to effectively extract its impact characteristics
a fault diagnosis method based on an improved extreme symmetric mode decomposition (ESMD) and support vector machine (SVM) as well as a dynamics model of spur bevel gear for investigating typically gearbox fault mechanism is proposed. In this method
the vibration signal is adaptively decomposed into multiple IMF components by the improved ESMD
and then a certain number of components are selected with the maximum kurtosis-envelope spectrum index. Meanwhile
the singular values of each selected IMF are extracted to construct the feature vector set
which is input into the SVM for the fault pattern recognition finally. Dynamic simulation and gearbox experimental research show that the improved ESMD-SVM method can extract and identify gearbox fault information effectively.
齿轮箱改进型ESMD动力学分析模式识别
GearboxImproved ESMDDynamics analysisPattern recognition
周泽坤.风机齿轮箱故障诊断技术研究综述[J].技术与市场,2016,23(4):25-26.
ZHOU Zekun.Summary of research on fault diagnosis technology of wind turbine gearbox[J].Technology and Market,2016,23(4):25-26.
WANG T Y,HAN Q K,CHU F L,et al.Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox:a review[J].Mechanical Systems and Signal Processing,2019,126:662-685.
HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings:Mathematical Physical and Engineering Science,1998,454(1971):903-995.
WANG X,CHEN Y,LI Z,et al.The impact of climate change and human activities on the Aral Sea Basin over the past 50 years[J].Atmospheric Research,2020,245:105125.
FENG K,SU X.Spatiotemporal characteristics of drought in the Heihe River Basin based on the extreme-point symmetric mode decomposition method[J].International Journal of Disaster Risk Science,2019,10(1/2):591-603.
BORDOLOI D J,TIWARI R.Optimum multi-fault classification of gears with integration of evolutionary and SVM algorithms[J].Mechanism and Machine Theory,2013,73:49-60.
AMARNATH M,KRISHNA R P I.Local fault detection in helical gears via vibration and acoustic signals using EMD based statistical parameter analysis[J].Measurement,2014,58:154-164.
HE C,WU T,LIU C C,et al.A novel method of composite multiscale weighted permutation entropy and machine learning for fault complex system fault diagnosis[J].Measurement,2020,158:107748.
陈伟.行星齿轮箱振动信号特征提取与故障诊断研究[D].南京:南京航空航天大学,2017:33-34.
CHEN Wei.Research on vibration signal feature extraction and fault diagnosis of planetary gearbox[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2017:33-34.
田松峰,胥佳瑞,王美俊,等.基于EEMD云模型与SVM的汽轮机转子故障诊断方法[J].热力发电,2017,46(4):111-114.
TIAN Songfeng,XU Jiarui,WANG Meijun,et al.A rotor fault diagnosis method based on EEMD cloud model and SVM[J].Thermal Power Generation,2017,46(4):111-114.
张倩,杨耀权.基于支持向量机核函数的研究[J].电力科学与工程,2012,28(5):42-45.
ZHANG Qian,YANG Yaoquan.Research on the kernel function of support vector machine[J].Electric Power Science and Engineering,2012,28(5):42-45.
LAFI W,DJEMAL F,TOUSI D,et al.Dynamic modelling of differential bevel gear system in the presence of a defect[J].Mechanism and Machine Theory,2019,139:81-108.
YANG Y,CAO L Y,LI H,et al.Nonlinear dynamic response of a spur gear pair based on the modeling of periodic mesh stiffness and static transmission error[J].Applied Mathematical Modelling,2019,72:444-469.
WANG Z,PU W,PEI X,et al.Nonlinear dynamical behaviors of spiral bevel gears in transient mixed lubrication[J].Tribology International,2021,160:107022.
0
浏览量
19
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构