浏览全部资源
扫码关注微信
1.中国科学院自动化研究所, 北京 100190
2.哈尔滨理工大学 计算机科学与技术学院, 黑龙江 哈尔滨 150080
3.北京卫星制造厂有限公司, 北京 100094
4.南京天祥智能设备科技有限公司, 江苏 南京 211300
刘漫贤(1986— ),男,广东潮州人,博士,副研究员;研究方向为精密感知与智能控制;manxian.liu@ia.ac.cn。
纸质出版日期:2023-01-15,
收稿日期:2021-12-20,
修回日期:2022-07-04,
扫 描 看 全 文
刘漫贤,许梓嘉,申绪佳等.输送用模锻易拆链磨损预测及可视化辅助决策[J].机械传动,2023,47(01):147-154.
Liu Manxian,Xu Zijia,Shen Xujia,et al.Wear Prediction and Visual Decision Support of Drop Forged Rivetless Chain for Conveyors[J].Journal of Mechanical Transmission,2023,47(01):147-154.
刘漫贤,许梓嘉,申绪佳等.输送用模锻易拆链磨损预测及可视化辅助决策[J].机械传动,2023,47(01):147-154. DOI: 10.16578/j.issn.1004.2539.2023.01.021.
Liu Manxian,Xu Zijia,Shen Xujia,et al.Wear Prediction and Visual Decision Support of Drop Forged Rivetless Chain for Conveyors[J].Journal of Mechanical Transmission,2023,47(01):147-154. DOI: 10.16578/j.issn.1004.2539.2023.01.021.
针对输送用模锻易拆链存在的磨损状况难以准确检测、预测和检修用时长等难题,开展了基于灰色模型和可视化辅助决策的磨损寿命预测和主动检修技术研究。采用基于机器视觉的磨损检测装置获取磨损数据,通过定义和分析磨损关键参数对磨损数据进行清洗,基于灰色模型建立了磨损预测模型;基于预测数据、历史数据及运行工况等建立辅助决策模型,通过综合评估后输出最优检修方案,并基于可视化仿真技术立体、动态地呈现磨损状况,快速精确定位磨损链条。实验结果表明,磨损寿命预测模型的拟合精度较高,磨损预警误报率和漏报率较低,可满足磨损寿命预测要求。通过磨损预测及可视化辅助决策技术,可有效地提高检修效率,减少生产线受迫停运的风险。
In order to accurately detect
predict and maintain the wear condition of drop forged rivetless chain for conveyors
the methods of wear prediction and active maintenance are developed based on gray model and visual decision support. The wear data are acquired by wear detection device based on machine vision. The obtained data are cleaned by defining and analyzing key parameters of wear condition. A wear prediction model is built based on the gray model. A decision-making support model is constructed that can obtain the optimal plan of maintenance by comprehensively evaluating the wear condition with the forecast data
historical data
and operating condition data. The wear condition can be presented in a three-dimensional and dynamic manner to quickly and accurately locate the wear chain by a visual simulation method. The experiment results show that the wear life prediction model has high fitting accuracy
low false alarm rates
and low missed detection rates of wear early-warning
which can satisfy the requirements of wear life prediction. Through the proposed wear prediction model and visual decision support method
the maintenance efficiency is significantly improved
and the risk of forced shutdown of the production line is reduced.
模锻易拆链可视化辅助决策磨损预测灰色模型机器视觉
Drop forged rivetless chainVisual decision supportWear predictionGray modelMachine vision
卢建富,楼建军,楼义,等.输送用模锻易拆链的设计[J].机械传动,2017,41(7):62-65.
LU Jianfu,LOU Jianjun,LOU Yi,et al.Design of drop forged rivetless chain for conveyor[J].Journal of Mechanical Transmission,2017,41(7):62-65.
刘卫东,王广兵,王常臻,等.新型模锻链条在湿式捞渣机上的应用研究[J].山东电力技术,2020,47(1):62-64.
LIU Weidong,WANG Guangbing,WANG Changzhen,et al.Study on application of new type die forging chain in wet slag dredger[J].Shandong Electric Power,2020,47(1):62-64.
王馨乐.刮板输送机链条异常磨损技术研究与应用[J].煤炭科技,2016(4):96-100.
WANG Xinle.Research and application of abnormal wear technology of scraper conveyor chain[J].Coal Science and Technology Magazine,2016(4):96-100.
孙波,王晓艳.悬链式船舶链条机械磨损寿命预测准确度评估[J].舰船科学技术,2018,40(14):70-72.
SUN Bo,WANG Xiaoyan.Accuracy evaluation of mechanical wear life prediction for chain ship chain[J].Ship Science and Technology,2018,40(14):70-72.
刘安琴.船舶链条机械磨损寿命预测技术[J].舰船科学技术,2018,40(22):28-30.
LIU Anqin.Research on prediction technology for mechanical wear life of ship chain[J].Ship Science & Technology,2018,40(22):28-30.
METIL´KOV S A,BEREZHNOI S B.Predicting the life of chain transmissions[J].Russian Engineering Research,2014,34(6):362-365.
唐程理.重型刮板输送机链条节距磨损对刮板机运行的影响及处理方法浅析[J].中国战略新兴产业,2017(12):179-180.
TANG Chengli.Analysis of the influence of chain pitch wear on the heavy scraper conveyor and the treatment method[J].China Strategic Emerging Industry,2017(12):179-180.
赵娟.矿用刮板输送机链条磨损特征及原因分析[J].科技展望,2016,26(33):25.
ZHAO Juan.Analysis of wear characteristics and causes of scraper conveyor chain[J].Science and Technology,2016,26(33):25.
徐士祺,殷彦龙,林清军,等.基于改进灰色模型的管壁蜡沉积厚度预测研究[J].中国安全生产科学技术,2021,17(10):32-38.
XU Shiqi,YIN Yanlong,LIN Qingjun,et al.Research on prediction of wax deposition thickness on pipe wall based on improved grey model[J].Journal of Safety Science and Technology,2021,17(10):32-38.
武文锐,师思超.基于小波去噪的灰色模型在变形监测中的应用[J].地理空间信息,2021,19(5):85-88.
WU Wenrui,SHI Sichao.Application of gray model based on wavelet denoising in deformation monitoring[J].Geospatial Information,2021,19(5):85-88.
潘澔,高尚.GM(1,1)模型的性质及改进[J].山东大学学报(理学版),2021,56(11):38-42.
PAN Hao,GAO Shang.Properties and improvement of GM(1,1) model[J].Journal of Shandong University (Natural Science),2021,56(11):38-42.
李嘉诺,程毛林.拓展的灰色GM(1,1)模型及其应用[J].苏州科技大学学报(自然科学版),2021,38(4):35-40.
LI Jianuo,CHENG Maolin.The expansion of grey GM(1,1) model and its application[J].Journal of Suzhou University of Science and Technology (Natural Science Edition) ,2021,38(4):35-40.
董乾钦,庞欣然,王浩,等.基于灰色预测模型的工控设备健康诊断与故障预测[J].石油化工自动化,2021,57(S1):92-95.
DONG Qianqin,PANG Xinran,WANG Hao,et al.Industrial control equipment health diagnosis and fault prediction based on grey prediction[J].Automation in Petro-Chemical Industry,2021,57(S1):92-95.
张锴,王成勇,贺丽娟.一类改进的GOM(1,1)模型及其应用[J].工程数学学报,2021,38(1):38-48.
ZHANG Kai,WANG Chengyong,HE Lijuan.An improved GOM(1,1) model and its application[J].Chinese Journal of Engineering Mathematics,2021,38(1):38-48.
戚小玉.基于铁路科技创新平台的可视分析与辅助决策[J].实验技术与管理,2021,38(10):20-25.
QI Xiaoyu.Visual analysis and auxiliary decision-making based on railway science and technology innovation platform[J].Experimental Technology and Management,2021,38(10):20-25.
0
浏览量
18
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构