浏览全部资源
扫码关注微信
1.无锡科技职业学院 智能制造学院, 江苏 无锡 214028
2.西安交通大学 机械工程学院, 陕西 西安 710049
3.联合传动及轴承技术研究中心, 宁夏 石嘴山 753000
武彩霞(1979— ),女,河北邢台人,硕士,讲师;研究方向为工业控制;sunwukong20222@163.com。
纸质出版日期:2023-01-15,
收稿日期:2021-12-30,
修回日期:2022-03-15,
扫 描 看 全 文
武彩霞,李帆,刘育博.改进经验小波变换和改进字典学习在轴承故障识别中的应用[J].机械传动,2023,47(01):138-146.
Wu Caixia,Li Fan,Liu Yubo.Application of Enhanced EWT and Enhanced Dictionary Learning in Bearing Faults Identification[J].Journal of Mechanical Transmission,2023,47(01):138-146.
武彩霞,李帆,刘育博.改进经验小波变换和改进字典学习在轴承故障识别中的应用[J].机械传动,2023,47(01):138-146. DOI: 10.16578/j.issn.1004.2539.2023.01.020.
Wu Caixia,Li Fan,Liu Yubo.Application of Enhanced EWT and Enhanced Dictionary Learning in Bearing Faults Identification[J].Journal of Mechanical Transmission,2023,47(01):138-146. DOI: 10.16578/j.issn.1004.2539.2023.01.020.
通过深度学习进行滚动轴承故障识别时,存在因信号噪声导致故障识别率较低和深层网络收敛速度慢的问题。针对上述问题,提出了一种改进经验小波变换(EEWT)和改进字典学习(EDL)的轴承故障识别方法。首先,将轴承振动信号进行包络谱变换,通过包络谱的极值点与自适应阈值的关系进行包络谱边界自动划分,进而利用经验小波变换(EWT)将信号自动分解为调幅-调频(AM-FM)分量;其次,提出一种新的AM-FM分量筛选指标,利用筛选指标选取合适的AM-FM分量进行重构,进而对信号进行有效降噪;最后,利用稀疏性约束逐层学习降噪后轴承故障样本中的典型结构特征,并构造深层故障字典(DFD),将故障样本输入DFD中,根据样本的重建误差确定故障类别。试验结果表明,该方法对噪声的鲁棒性高,故障识别能力优于其他模型,而且该方法可利用驱动字典自动提取轴承振动信号样本中的故障特征;同时,EDL结构使所提取的故障特征具有较好的层次性,符合人对故障的直观认识,可用于滚动轴承故障识别工程中。
When realizing rolling bearing fault identification through deep learning
there is a low recognition rate and convergence rate due to ambient noise. Aiming at the above problem
a fault identification model based on enhanced empirical wavelet transform (EEWT) and enhanced dictionary learning (EDL) is proposed. Firstly
the vibration signals of rolling bearing are transformed by envelope spectrum
and envelope spectrum adaptive segmentation is implemented through the relationship between the envelope point and the adaptive threshold
and signals are decomposed into several amplitude modulation-frequency modulation (AM-FM) components. Secondly
a new component screening index is proposed
and then the appropriate AM-FM components are reconstructed to effectively reduce the noise of signals. Finally
the sparsity constraint is used to learn the typical structural characteristics in the bearing fault sample layer by layer
and the deep fault dictionary (DFD) is constructed. Then the fault samples are fed into the DFD to determine the fault category according to the reconstruction error of the samples. The test results show that the proposed method is robust to noise and has better fault recognition ability than other models. And the proposed method utilizes the sparse constraint driving dictionary to automatically extract the fault features in the vibration signal samples
while the EDL structure makes the extracted fault features have better hierarchical and physical meaning
which is in line with people's intuitive understanding of the fault and can be used in the rolling bearing fault identification engineering.
滚动轴承故障识别经验小波变换字典学习
Rolling bearingFaults identificationEmpirical wavelet transformDictionary learning
谢小正,李俊,赵荣珍,等.SVD-LMD联合降噪和TEO的滚动轴承故障诊断[J].机械传动,2021,45(6):104-112.
XIE Xiaozheng,LI Jun,ZHAO Rongzhen,et al.Fault diagnosis of rolling bearings based on SVD-LMD joint denoising and TEO[J].Journal of Mechanical Transmission,2021,45(6):104-112.
SHAO H D,JIANG H K,ZHANG H Z,et al.Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing[J].Mechanical Systems and Signal Processing,2018,100(5):743-765.
SHAO H D,JIANG H K,WANG F A,et al.An enhancement deep feature fusion method for rotating machinery fault diagnosis[J].Knowledge-Based Systems,2017,119(10):200-220.
丁家满,吴晔辉,罗青波,等.基于深度森林的轴承故障诊断方法[J].振动与冲击,2021,40(12):107-113.
DING Jiaman,WU Yehui,LUO Qingbo,et al.A fault diagnosis method of mechanical bearing based on the deep forest[J].Journal of Vibration and Shock,2021,40(12):107-113.
王登峰,胡浩,吴建德.基于SAE与深度Q网络的旋转机械故障诊断[J].组合机床与自动化加工技术,2021(4):40-44.
WANG Dengfeng,HU Hao,WU Jiande.Fault diagnosis of rotating machinery based on SAE and depth Q network[J].Modular Machine Tool & Automatic Manufacturing Technique,2021(4):40-44.
CHEN K,HU J,HE J.Detection and classification of transmission line faults based on unsupervised feature learning and convolutional sparse autoencoder[J].IEEE Transactions on Smart Grid,2016,9(3):1748-1758.
JIANG H K,LI C L,LI H X.An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis[J].Mechanical Systems and Signal Processing,2013,36(2):225-239.
WEI Z X,WANG Y X,HE S L,et al.A novel intelligent method for bearing fault diagnosis based on affinity propagation clustering and adaptive feature selection[J].Knowledge-Based Systems,2017,116:1-12.
LIU Xiaofeng,BO Lin,LUO Honglin.Bearing faults diagnostics based on hybrid LS-SVM and EMD method[J].Measurement,2015,59:145-166.
WANG J J,GAO R X,YAN R Q.Integration of EEMD and ICA for wind turbine gearbox diagnosis[J].Wind Energy,2014,17(5):757-773.
PAN H Y,YANG Y,LI X,et al.Symplectic geometry mode decomposition and its application to rotating machinery compound fault diagnosis[J].Mechanical Systems and Signal Processing,2019,114:189-211.
GILLES J.Empirical wavelet transform[J].IEEE Transactions on Signal Processing,2013,61(16):3999-4010.
王 茜,田慕琴,宋建成,等.基于经验小波变换的振动信号特征量提取[J].振动与冲击,2021,40(16):261-266.
WANG Qian,TIAN Muqin,SONG Jiancheng,et al.Feature extraction of vibration signals based on empirical wavelet transform[J].Journal of Vibration and Shock,2021,40(16):261-266.
WU Y J,DENG Y,DUAN H B,et al.Dual tree complex wavelet transform approach to copy-rotate-move forgery detection[J].Science China Information Sciences,2014,57(1):125-136.
张西宁,李霖,刘书语,等.基于能量峰定位的经验小波变换及在轴承微弱故障诊断中的应用[J].西安交通大学学报,2021,55(8):1-8.
ZHANG Xining,LI Lin,LIU Shuyu,et al.Empirical wavelet transform based on energy peak location with applications to bearing weak fault diagnosis[J].Journal of Xi'an Jiaotong University,2021,55(8):1-8.
NESTEROV Y.Gradient methods for minimizing composite functions[J].Mathematical Programming,2013,140(1):125-161.
ZHENG Z,XIN G.Fault feature extraction of hydraulic pumps based on symplectic geometry mode decomposition and power spectral entropy[J].Entropy,2019,21(5):476.
HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[J].Computer Vision and Pattern Recognition,2015(4):770-787.
CHEN J,LI Z,PAN J,et al.Wavelet transform based on inner product in fault diagnosis of rotating machinery:a review[J].Mechanical Systems and Signal Processing,2016,70(4):1-35.
0
浏览量
18
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构