浏览全部资源
扫码关注微信
1.桂林理工大学 机械与控制工程学院, 广西 桂林 541006
2.红河学院 工学院, 云南 蒙自 661199
熊燕(1986— ),女,云南蒙自人,硕士研究生,助理工程师;研究方向为智能优化算法及其应用;xyan2014@163.com。
纸质出版日期:2023-01-15,
收稿日期:2021-09-28,
修回日期:2021-10-28,
扫 描 看 全 文
熊燕,邹自明,程加堂等.一种自适应CS算法及其在风电齿轮箱故障诊断中的应用[J].机械传动,2023,47(01):132-137.
Xiong Yan,Zou Ziming,Cheng Jiatang,et al.A Self-adaptive CS Algorithm and Its Application in Fault Diagnosis of Wind Turbine Gearboxes[J].Journal of Mechanical Transmission,2023,47(01):132-137.
熊燕,邹自明,程加堂等.一种自适应CS算法及其在风电齿轮箱故障诊断中的应用[J].机械传动,2023,47(01):132-137. DOI: 10.16578/j.issn.1004.2539.2023.01.019.
Xiong Yan,Zou Ziming,Cheng Jiatang,et al.A Self-adaptive CS Algorithm and Its Application in Fault Diagnosis of Wind Turbine Gearboxes[J].Journal of Mechanical Transmission,2023,47(01):132-137. DOI: 10.16578/j.issn.1004.2539.2023.01.019.
针对布谷鸟搜索(CS)算法易出现早熟收敛以及风电机组齿轮箱的故障模式难以有效识别等问题,提出一种基于自适应CS算法的BP神经网络(SaCS-BP)智能诊断技术。通过构建SaCS算法,实现了步长和发现概率的自适应调整,并采用一组基准函数测试了该算法的有效性;将SaCS与BP神经网络进行融合,构建了风电齿轮箱的故障诊断模型。结果表明,SaCS算法具有较佳的寻优精度和普适性。此外,与BP神经网络以及布谷鸟搜索算法优化BP网络(CS-BP)相比,SaCS-BP算法获得了最高的诊断准确度,从而实现了风电齿轮箱故障模式的有效识别。
Aiming at the problems of premature convergence of cuckoo search algorithm and difficulty in effectively identifying the fault modes of wind turbine gearboxes
an intelligent diagnosis technology based on BP neural network trained by the self-adaptive cuckoo search (SaCS-BP) algorithm is proposed. By constructing SaCS algorithm
the step size and discovery probability are adjusted adaptively
and a set of benchmark functions are employed to test the effectiveness of the proposed algorithm. Then
the fault diagnosis model of wind turbine gearbox is constructed by combining SaCS with BP neural network. Experimental results show that SaCS algorithm has better optimization accuracy and universality. Moreover
compared with BP neural network and BP network trained by cuckoo search algorithm (CS-BP)
SaCS-BP method has the highest diagnostic accuracy
so as to realize the effective identification of the fault modes of wind turbine gearboxes.
布谷鸟搜索自适应风电齿轮箱BP神经网络故障诊断
Cuckoo search (CS)Self-adaptiveWind turbine gearboxBP neural networkFault diagnosis
YANG X S,DED S.Cuckoo search:recent advances and applications[J].Neural Computing and Applications,2014,24(1):169-174.
CHENG J T,WANG L,XIONG Y.Ensemble of cuckoo search variants[J].Computers & Industrial Engineering,2019,135:299-313.
WU Z Q,DU C Q.The parameter identification of PMSM based on improved cuckoo algorithm[J].Neural Processing Letters,2019,50:2701-2715.
CRITIN R,KUMAR S,PRIYA C,et al.Deep neural network based rider-cuckoo search algorithm for plant disease detection[J].Artificial Intelligence Review,2020,53:4993-5018.
ONG P,ZAINUDDIN Z.Optimizing wavelet neural networks using modified cuckoo search for multi-step ahead chaotic time series prediction[J].Applied Soft Computing,2019,80:374-386.
林近山,窦春红,赵光胜,等.基于傅里叶分解方法的风电齿轮箱故障诊断[J].机械传动,2018,42(11):132-136.
LIN Jinshan,DOU Chunhong,ZHAO Guangsheng,et al.Fault diagnosis of wind-turbine gearboxes based on fourier decomposition method[J].Journal of Mechanical Transmission,2018,42(11):132-136.
ZHANG J Q,XU B M,WANG Z Y,et al.An FSK-MBCNN based method for compound fault diagnosis in wind turbine gearboxes[J].Measurement,2021,172:108933.
鲁炯,朱才朝,王屹立.基于信息融合的风电机组齿轮箱轴承故障诊断[J].重庆大学学报,2020,43(8):11-22.
LU Jiong,ZHU Caichao,WANG Yili.Fault diagnosis of wind turbines gearbox bearings based on information fusion[J].Journal of Chongqing University,2020,43(8):11-22.
李状,柳亦兵,马志勇,等.结合C-均值聚类的自适应共振神经网络在风电机组齿轮箱故障诊断中的应用[J].动力工程学报,2015,35(8):646-651.
LI Zhuang,LIU Yibing,MA Zhiyong,et al.Application of ART2 neural network combined with C-means clustering in fault diagnosis of wind turbine gearbox[J].Journal of Chinese Society of Power Engineering,2015,35(8):646-651.
朱永超,朱才朝,宋朝省,等.PCA-PSO/GS-SVM组合方法在风电齿轮箱故障预测中的应用研究[J].太阳能学报,2021,42(3):35-42.
ZHU Yongchao,ZHU Caichao,SONG Chaosheng,et al.Application of PCA-PSO/GS-SVM combination method in fault prediction of wind turbine gerabox[J].Acta Energiae Solaris Sinica,2021,42(3):35-42.
胡璇,叶柯华,李春,等.基于集合经验模态分解和关联维数的风力机齿轮箱故障诊断[J].热能动力工程,2020,35(8):132-141.
HU Xuan,YE Kehua,LI Chun,et al.Fault diagnosis of wind turbine gearbox based on ensemble empirical mode decomposition and correlation dimension[J].Journal of Engineering for Thermal Energy and Power,2020,35(8):132-141.
徐进,丁显,程浩,等.基于一维密集连接卷积网络的风电齿轮箱智能故障分类[J].可再生能源,2020,38(2):187-192.
XU Jin,DING Xian,CHENG Hao,et al.Intelligent fault classification of wind turbine gearbox based on 1-D densely connected convolutional network[J].Renewable Energy Resources,2020,38(2):187-192.
高畅,于忠清,周强.GA-ACO优化BP神经网络在行星齿轮箱故障诊断中的应用[J].机械传动,2021,45(3):153-160.
GAO Chang,YU Zhongqing,ZHOU Qiang.Application of GA-ACO optimized BP neural network in fault diagnosis of planetary gearbox[J].Journal of Mechanical Transmission,2021,45(3):153-160.
XU X L,LIU X L.Fault diagnosis method for wind turbine gearbox based on image characteristics extraction and actual value negative selection algorithm[J].International Journal of Pattern Recognition and Artificial Intelligence,2020,34(14):2054034.
谢锋云,董建坤,王二化,等.基于双隐含层RWPSO-BP神经网络的齿轮箱故障诊断研究[J].现代制造工程,2021(6):155-160.
XIE Fengyun,DONG Jiankun,WANG Erhua,et al.Research on gearbox fault diagnosis based on double hidden layer RWPSO-BP neural network[J].Modern Manufacturing Engineering,2021(6):155-160.
YANG X S,DEB S.Engineering optimization by cuckoo search[J].International Journal of Mathematical Modelling and Numerical Optimisation,2010,1(4):330-343.
CHENG J T,WANG L,JIANG Q Y,et al.Cuckoo search algorithm with dynamic feedback information[J].Future Generation Computer Systems,2018,89:317-334.
SARANGI S,PANDA R,KUMAR D P,et al.Design of optimal high pass and band stop FIR filters using adaptive cuckoo search algorithm[J].Engineering Applications of Artificial Intelligence,2018,70:67-80.
罗毅,甄立敬.基于小波包与倒频谱分析的风电机组齿轮箱齿轮裂纹诊断方法[J].振动与冲击,2015,34(3):210-214.
LUO Yi,ZHEN Lijing.Diagnosis method of turbine gearbox gearcrack based on wavelet packet and cepstrum analysis[J].Journal of Vibration and Shock,2015,34(3):210-214.
刘永前,徐强,David Infield,等.基于引力搜索神经网络的风电机组传动链故障识别[J].振动与冲击,2015,34(2):134-137.
LIU Yongqian,XU Qiang,DAVID Infield,et al.Fault identification of wind turbine drivetrain using BP neural network based on gravitational search algorithm[J].Journal of Vibration and Shock,2015,34(2):134-137.
0
浏览量
15
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构