1.天津工业大学 机械工程学院, 天津 300387
2.天津工业大学 天津市现代机电装备技术重点实验室, 天津 300387
邢静忠(1966— ),男,甘肃平凉人,博士,教授;研究方向为谐波减速器的结构分析和啮合性能仿真研究。
扫 描 看 全 文
邢静忠,杨子钰,陈晓霞等.谐波齿轮间隙装配下柔轮齿圈的力学特性及轮齿定位研究[J].机械传动,2022,46(12):7-15.
Xing Jingzhong,Yang Ziyu,Chen Xiaoxia,et al.Research on Tooth Positioning and Mechanical Properties of Flexspline Tooth Rings with Harmonic Gear Clearance Assembly[J].Journal of Mechanical Transmission,2022,46(12):7-15.
邢静忠,杨子钰,陈晓霞等.谐波齿轮间隙装配下柔轮齿圈的力学特性及轮齿定位研究[J].机械传动,2022,46(12):7-15. DOI: 10.16578/j.issn.1004.2539.2022.12.002.
Xing Jingzhong,Yang Ziyu,Chen Xiaoxia,et al.Research on Tooth Positioning and Mechanical Properties of Flexspline Tooth Rings with Harmonic Gear Clearance Assembly[J].Journal of Mechanical Transmission,2022,46(12):7-15. DOI: 10.16578/j.issn.1004.2539.2022.12.002.
现有理论认为变形后柔轮齿圈中性线为整圈贴合凸轮轮廓的等距线,未考虑配合间隙和中面伸长的影响。为揭示配合间隙装配状态下柔轮的力学特性和齿圈变形后的轮齿定位,以椭圆凸轮波发生器为例,考虑柔轮内壁与波发生器外圈间隙和柔性轴承游隙引起的配合间隙及齿圈中面伸长,建立了柔轮齿圈变形的接触力学模型;引入变形后包角为未知参数,依据包角内用椭圆等距线表示的齿圈中线的曲率及力平衡条件确定齿圈内力;根据短轴处的位移条件和包角处的曲率条件及弧长关系,运用能量法迭代计算了包角、非接触区的大小及齿圈的内力和变形。以有限元模型结果为参照,对比验证了理论结果和轮齿定位偏差。理论分析和数值模拟均表明,受中面伸长的影响,零间隙配合的实际包角远小于90°,整圈贴合凸轮并不符合实际;降低配合间隙可有效增大轴承承载区,降低柔性轴承的径向负载和磨损;考虑包角和周向伸长,可以获得更准确的轮齿定位。研究为谐波齿轮的结构设计和啮合分析奠定了更准确的基础。
The current theory considers that the shape of the deformed flexspline tooth ring neutral line is an isometric line of the cam, which ignores the effect of fit clearance and neutral line's elongation. To reveal the mechanical properties and the tooth positioning on deformed flexspline tooth rings with fit clearance, taking elliptical cam wave generator as an example and considering the fit clearance caused by the clearance between the inner wall of flexsplines, the outer surface of wave generators, the clearance of flexible bearings and the elongation of neutral lines, a contact mechanical model of tooth rings is established. The wrap angle after deformation is introduced as an unknown parameter, and the internal forces in tooth rings in the wrap angle is determined according to the curvature of the neutral line of tooth rings represented by the elliptic equidistant line and the equilibrium equations of the forces. The size of non-contact area, and the internal forces and deformation of tooth ring is solved iteratively with Energy Method according to the displacement conditions on minor axis and the curvature condition at wrap angle and arc length relationship. Based on the results of finite element model, the theoretical results and tooth positions are compared and verified. Both the theoretical analysis and the numerical simulation show that the actual wrap angle of zero clearance fit is far less than 90°, and the full round fitting cam is not true because of the elongation of the neutral line. Reducing fit clearance can effectively increase the contact area and reduce the radial load and the wear of flexible bearings. Considering the wrap angle and the circumferential elongation, more accurate tooth positioning may lead to a more accurate foundation for structural design and meshing analysis of harmonic gears.
谐波齿轮传动椭圆凸轮波发生器配合间隙力学分析能量法
Harmonic gear driveElliptic cam wave generatorFit clearanceMechanical analysisEnergy method
王瑞锋,张立勇,张建伟,等.谐波齿轮传动概述[J].机械传动,2019,43(1):171-176.
WANG Ruifeng,ZHANG Liyong,ZHANG Jianwei,et al.Summary of harmonic gear drive[J].Journal of Mechanical Transmission,2019,43(1):171-176.
伊万诺夫.谐波齿轮传动[M].沈允文,李克美,译.北京:国防工业出版社,1987:13-22,80-90.
IWANNOV M N.The harmonic drive[M].SHEN Yunwen,LI Kemei,Jr.Beijing:National Defense Industry Press,1987:13-22,80-90.
付军锋,董海军,沈允文.谐波齿轮传动中柔轮应力的有限元分析[J].中国机械工程,2007(18):2210-2214.
FU Junfeng,DONG Haijun,SHEN Yunwen.Stress analysis of the flexspline in harmonic gearing by using FEM[J].China Mechanical Engineering,2007(18):2210-2214.
沈允文,叶庆泰.谐波齿轮传动的理论和设计[M].北京:机械工业出版社,1985:181-206.
SHEN Yunwen,YE Qingtai.Theory and design of harmonic drive[M].Beijing:China Machine Press,1985:181-206.
DONG H M,TING K L,WANG D L.Kinematic fundamentals of planar harmonic drives[J].Journal of Mechanical Design,2011,133(1):011007.
刘文芝,张乃仁,张春林,等.谐波齿轮传动中杯形柔轮的有限元计算与分析[J].机械工程学报,2006(4):52-57.
LIU Wenzhi,ZHANG Nairen,ZHANG Chunlin,et al.Finite element calculation and analysis of cup flexspline in harmonic gear drive[J].Journal of Mechanical Engineering,2006(4):52-57.
高海波,李志刚,邓宗全.基于ANSYS的杯形柔轮结构参数对柔轮应力的敏感度分析[J].机械工程学报,2010,46(5):1-7.
GAO Haibo,LI Zhigang,DENG Zongquan.Sensitivity analysis of cup-shaped flexible gear parameters to its stress based on ANSYS[J].Journal of Mechanical Engineering,2010,46(5):1-7.
YAGUE-SPAUDE E,GONZALES-PEREZ I,AZNAR A F.Stress analysis of strain wave gear drives with four different geometries of wave generator[J].Meccanica,2020,55(11):2285-2304.
CHEN X X,LIN S Z,XING J Z.Modeling of flexspline and contact analyses of harmonic drive[J].Key Engineering Materials,2009(419/420):597-600.
CHEN X X,LIN S Z,XING J Z.Deformation of flexspline under transmission force in harmonic drive[J].Advanced Materials Research,2010(97/101):3536-3539.
陈晓霞,刘玉生,邢静忠,等.谐波齿轮中柔轮中性层的伸缩变形规律[J].机械工程学报,2014,50(21):189-196.
CHEN Xiaoxia,LIU Yusheng,XING Jingzhong,et al.Neutral line stretch of flexspline in harmonic driver[J].Journal of Mechanical Engineering,2014,50(21):189-196.
PACANA J,WITKOWSKI W,MUCHA J.FEM analysis of stress distribution in the hermetic harmonic drive flexspline[J].Strength of Materials,2017,49(1):1-11.
陈茜,李俊阳,王家序,等.制造误差对谐波齿轮应力的影响规律[J].浙江大学学报(工学版),2019,53(12):2289-2297.
CHEN Qian,LI Junyang,WANG Jiaxu,et al.Influence law of manufacturing error on harmonic gear stress[J].Journal of Zhejiang University(Engineering Science),2019,53(12):2289-2297.
郦黎伟,范元勋,罗明.谐波传动柔轮扭转刚度的研究[J].机械制造与自动化,2012,41(3):6-8.
LI Liwei,FAN Yuanxun,LUO Ming.Research on torsion stiffness of flexspline in harmonic gear[J].Machine Building & Automation,2012,41(3):6-8.
董惠敏,张春懋.齿啮式谐波传动柔轮负载变形函数及齿形修正的研究[J].机械传动,2011,35(7):7-11.
DONG Huimin,ZHANG Chunmao.Study on deformation function of flexible gear under load and its tooth profile modification of tooth-locked-output harmonic drive[J].Journal of Mechanical Transmission,2011,35(7):7-11.
0
浏览量
9
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构