1.晋中职业技术学院 机电工程学院, 山西 晋中 030600
2.晋中学院 机械系, 山西 晋中 030600
3.合肥工业大学 机械工程学院, 安徽 合肥 230002
冀浩非(1983— ),男,山西晋中人,硕士;研究方向为材料及机械系统。
扫 描 看 全 文
冀浩非,刘慧玲,董加强.基于APIT-SA-MEMD和FLLE的齿轮故障识别[J].机械传动,2022,46(11):161-169.
Ji Haofei,Liu Huiling,Dong Jiaqiang.Gear Fault Diagnosis Based on APIT-SA-MEMD and FLLE[J].Journal of Mechanical Transmission,2022,46(11):161-169.
冀浩非,刘慧玲,董加强.基于APIT-SA-MEMD和FLLE的齿轮故障识别[J].机械传动,2022,46(11):161-169. DOI: 10.16578/j.issn.1004.2539.2022.11.025.
Ji Haofei,Liu Huiling,Dong Jiaqiang.Gear Fault Diagnosis Based on APIT-SA-MEMD and FLLE[J].Journal of Mechanical Transmission,2022,46(11):161-169. DOI: 10.16578/j.issn.1004.2539.2022.11.025.
齿轮往往处于恶劣的工作环境,其振动信号具有非线性和非平稳性的特点,研究出适用于齿轮的故障诊断方法具有重要意义。针对这一问题,提出了一种基于自适应投影本质变换正弦辅助多元经验模式分解(APIT-SA-MEMD)和Floyd局部线性嵌入算法(FLLE)的智能故障诊断方法。自适应投影本质变换多元经验模式分解存在模态混叠现象,因此,提出自适应投影本质变换正弦辅助多元经验模式分解来减轻传统经验模式分解存在的模态混叠现象。首先,采用APIT-SA-MEMD方法对齿轮振动信号进行分解,获得能够表征齿轮振动信号的IMF分量;在此基础上,提取所选取IMF分量的时域和频域特征,获得高维特征矩阵;最后,利用FLLE对高维特征矩阵进行降维和聚类分析,实现齿轮故障模式的识别。实验结果表明,提出的方法能够准确识别齿轮的不同故障类型。
Gears are often in a harsh working environment, and their vibration signals have the characteristics of non-linearity and non-stationarity. Therefore, it is of great significance to develop a fault diagnosis method suitable for gears. To solve this problem, an intelligent fault diagnosis method based on adaptive projection intrinsically transformation sine-assisted multivariate empirical mode decomposition (APIT-SA-MEMD) and Floyd local linear embedding (FLLE) algorithm is proposed. Multivariate empirical mode decomposition of adaptive projection intrinsically transformation has modal aliasing phenomenon, so APIT-SA-MEMD is proposed to reduce the modal aliasing phenomenon existing in traditional empirical mode decomposition. First, the APIT-SA-MEMD method is used to decompose the gear vibration signal, and the IMF component that can characterize the gear vibration signal is obtained. On this basis, the time domain and frequency domain features of the selected IMF components are extracted to obtain a high-dimensional feature matrix. Finally, FLLE is used to perform dimensionality reduction and clustering analysis on the high-dimensional feature matrix to realize the identification of gear fault modes. Experimental results show that the proposed method can accurately identify different types of gear faults.
齿轮自适应投影本质变换正弦辅助多元经验模式分解Floyd局部线性嵌入降维故障识别
GearAdaptive projection intrinsically transformation sine-assisted multivariate empirical mode decompositionFloyd local linear embeddingDimensionality reductionFaults diagnosis
赵川,冯志鹏,张颖琳,等.基于双对抗编码的时变工况下行星齿轮箱智能故障诊断[J].振动与冲击,2021,40(20):158-167.
ZHAO Chuan,FENG Zhipeng,ZHANG Yinglin,et al.Intelligent fault diagnosis of planetary gearbox under time-varying working conditions based on dual confrontation coding[J].Journal of Vibration and Shock,2021,40(20):158-167.
张能文,崔飞,江冰,等.融合SDP和CNN的旋转机械齿轮箱故障诊断方法[J].工业控制计算机,2021,34(9):89-91.
ZHANG Nengwen,CUI Fei,JIANG Bing,et al.Rotating machinery gearbox fault diagnosis method combining SDP and CNN[J].Industrial Control Computer,2021,34(9):89-91.
陈立爱,陈松,张舒,等.基于SOM-BP复合神经网络的齿轮故障诊断研究[J].煤矿机械,2021,42(7):187-190.
CHEN Liai,CHEN Song,ZHANG Shu,et al.Research on gear fault diagnosis based on SOM-BP compound neural network [J].Coal Mine Machinery,2021,42(7):187-190.
陈向民,段萌,张亢,等.基于ATF与EEMD变转速齿轮故障特征降噪方法[J].噪声与振动控制,2021,41(5):91-97.
CHEN Xiangmin,DUAN Meng,ZHANG Kang,et al.Noise reduction method based on ATF and EEMD variable speed gear fault characteristics [J].Noise and Vibration Control,2021,41(5):91-97.
陈克,张晓冬,李宁.基于CEEMD与自适小波阈值组合降噪在OPAX方法的应用[J].振动与冲击,2021,40(16):192-198.
CHEN Ke,ZHANG Xiaodong,LI Ning.The application of noise reduction based on the combination of CEEMD and adaptive wavelet threshold in OPAX method[J].Journal of Vibration and Shock,2021,40(16):192-198.
赵玲,秦树人,李宁,等.运用改进掩膜信号法的经验模态分解[J].振动.测试与诊断,2010,30(4):434-439.
ZHAO Ling,QIN Shuren,LI Ning,et al.Empirical mode decomposition using improved mask signal method[J].Journal of Vibration,Measurement & Diagnosis,2010,30(4):434-439.
REHMAN N,MANDIC D P.Multivariate empirical mode decomposition[J].Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,2010,466(2117):1291-1302.
武哲,杨绍普,任彬,等.基于噪声辅助多元经验模态分解和多尺度形态学的滚动轴承故障诊断方法[J].振动与冲击,2016(4):127-133.
WU Zhe,YANG Shaopu,REN Bin,et al.Fault diagnosis method of rolling bearing based on noise-assisted multi empirical modal decomposition and multi-scale morphology[J].Journal of Vibration and Shock,2016(4):127-133.
HEMAKOM A,GOVERDOVSKY V,LOONEY D,et al.Adaptive projection intrinsically transformed multivariate empirical mode decomposition in cooperative brain computer interface applications[J].Philosophical Transactions a Mathematical Physical Engineering,2016,374(2065):20150199.
黄丽丽,范业锐,张文兴.参数优化形态谱和SVM的行星齿轮箱故障诊断[J].机械设计与制造,2021(8):31-33.
HUANG Lili,FAN Yerui,ZHANG Wenxing.Parameter optimization morphology spectrum and SVM planetary gearbox fault diagnosis[J].Mechanical Design and Manufacturing,2021(8):31-33.
王振亚,姚立纲,蔡永武,等.基于熵-流特征和樽海鞘群优化支持向量机的故障诊断方法[J].振动与冲击,2021,40(6):107-114.
WANG Zhenya,YAO Ligang,CAI Yongwu,et al.Fault diagnosis method based on entropy-flow feature and support vector machine optimization of salvia group[J].Journal of Vibration and Shock,2021,40(6):107-114.
何雷,刘溯奇.强干扰下基于TMD-SVD和POS-BP网络的变速箱状态识别[J].机械传动,2021,45(5):169-176.
HE Lei,LIU Suqi.Gearbox status recognition based on TMD-SVD and POS-BP network under strong interference [J].Journal of Mechanical Transmission,2021,45(5):169-176.
何根新,周俊杰,周家兴,等.基于自适应权重粒子群优化BP神经网络的光伏阵列故障诊断方法研究[J].电子设计工程,2021,29(9):75-79.
HE Genxin,ZHOU Junjie,ZHOU Jiaxing,et al.Research on photovoltaic array fault diagnosis method based on adaptive weighted particle swarm optimization BP neural network[J].Electronic Design Engineering,2021,29(9):75-79.
王二化,刘颉.基于PCA和改进型SVM的齿轮裂纹故障诊断方法[J].机械设计与研究,2021,37(2):83-87.
WANG Erhua,LIU Jie.Gear crack fault diagnosis method based on PCA and improved SVM[J].Machine Design & Research,2021,37(2):83-87.
武凯,孙彦广,张琳.基于核主成分分析的热连轧断带故障诊断[J].中国冶金,2020,30(11):60-65.
WU Kai,SUN Yanguang,ZHANG Lin.Fault diagnosis of strip broken hot strip based on nuclear principal component analysis[J].China Metallurgy,2020,30(11):60-65.
李红贤,韩延,吴敬涛,等.基于ICA包络增强MEMD的滚动轴承故障诊断[J].航空动力学报,2021,36(2):405-412.
LI Hongxian,HAN Yan,WU Jingtao,et al.Fault diagnosis of rolling bearing based on ICA envelope-enhanced MEMD[J].Journal of Aerospace Power,2021,36(2):405-412.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构