1.河南科技大学机电工程学院, 河南 洛阳 471003
2.河南省机械设计及传动系统重点实验室, 河南 洛阳 471003
李魁(1993— ),男,河南焦作人,硕士研究生;研究方向为基于深度学习的轴承故障诊断。
隋新(1982— ),男,内蒙古包头人,博士,副教授;研究方向为机械设备状态监测及故障诊断技术。
扫 描 看 全 文
李魁,隋新,刘春阳等.基于变分模态分解和卷积神经网络融合的滚动轴承故障诊断方法[J].机械传动,2022,46(11):134-140.
Li Kui,Sui Xin,Liu Chunyang,et al.A VMD and CNN Combined Fault Diagnosis Method for Rolling Bearings[J].Journal of Mechanical Transmission,2022,46(11):134-140.
李魁,隋新,刘春阳等.基于变分模态分解和卷积神经网络融合的滚动轴承故障诊断方法[J].机械传动,2022,46(11):134-140. DOI: 10.16578/j.issn.1004.2539.2022.11.021.
Li Kui,Sui Xin,Liu Chunyang,et al.A VMD and CNN Combined Fault Diagnosis Method for Rolling Bearings[J].Journal of Mechanical Transmission,2022,46(11):134-140. DOI: 10.16578/j.issn.1004.2539.2022.11.021.
针对在强烈背景噪声影响下的滚动轴承故障特征提取困难,提出了一种基于变分模态分解与卷积神经网络融合的滚动轴承故障诊断方法。将原始振动信号分解为多个模态分量,结合皮尔逊相关系数作为自动分解终止阈值和最优模态分量选取指标;针对轴承故障特征构建卷积神经网络,将最优模态分量作为输入以提取、分类故障类型。试验结果表明,所提方法能够精确诊断滚动轴承故障,为强噪声影响下的滚动轴承故障识别提供了新的思路。
Aiming at the difficulty of extracting fault features of rolling bearings under the influence of strong background noise, a rolling bearing fault diagnosis method based on the fusion of variational mode decomposition (VMD) and convolutional neural network (CNN) is proposed. After decomposing the original variation signal into multiple components, the proposed method employs the Pearson correlation coefficient as the automatic decomposition termination threshold and the optimal modal component selection index; a convolutional neural network is constructed according to bearing fault features and the optimal modal component is used as the input to extract and classify the fault types. The experiments validate that the proposed method can accurately diagnose the rolling bearing faults, which is validated as a new method for rolling bearing fault diagnosis regarding strong background noise.
滚动轴承故障诊断强背景噪声变分模态分解卷积神经网络
Rolling bearingFault diagnosisStrong background noiseVariational mode decompositionConvolutional neural network
徐林,郑晓彤,付博,等.基于改进GAN算法的电机轴承故障诊断方法[J].东北大学学报(自然科学版),2019,40(12):1679-1684.
XU Lin,ZHENG Xiaotong,FU Bo,et al.Fault diagnosis method of motor bearing based on improved GAN algorithm[J].Journal of Northeastern University (Natural Science),2019,40(12):1679-1684.
杨建华,韩帅,张帅,等.强噪声背景下滚动轴承微弱故障特征信号的经验模态分解[J].振动工程学报,2020,33(3):582-589.
YANG Jianhua,HAN Shuai,ZHANG Shuai,et al.Empirical mode decomposition of weak fault characteristic signal of rolling bearing under strong noise background[J].Chinese Journal of Vibration Engineering,2020,33(3):582-589.
XU Y,CAI W,XIE T.Fault diagnosis of subway traction motor bearing based on information fusion under variable working conditions[J].Shock and Vibration,2021,27(3):1-21.
XU Z,QIN C,TANG G.A novel deconvolution cascaded variational mode decomposition for weak bearing fault detection with unknown signal transmission path[J].IEEE Sensors Journal,2020,21(2):1746-1755.
冯江华.基于改进磁链峰值能量法的牵引电机轴承故障诊断[J].中南大学学报(自然科学版),2021,52(4):1380-1388.
FENG Jianghua.Traction motor bearing fault diagnosis based on improved flux peak energy method[J].Journal of Central South University (Science and Technology),2021,52(4):1380-1388.
陈学军,杨永明.采用经验小波变换的风力发电机振动信号消噪[J].浙江大学学报(工学版),2018,52(5):988-995.
CHEN Xuejun,YANG Yongming.De-noising for vibration signals of wind power generator using empirical wavelet transform[J].Journal of Zhejiang University (Engineering Science),2018,52(5):988-995.
池永为,杨世锡,焦卫东,等.基于EMD-DCS的滚动轴承伪故障特征识别方法[J].振动与冲击,2020,39(9):9-16.
CHI Yongwei,YANG Shixi,JIAO Weidong,et al.EMD-DCS based pseudo-fault feature identify cation method for rolling bearings[J].Journal of Vibration and Shock,2020,39(9):9-16.
XU L,CHATTERTON S,PENNACCHI P.Rolling element bearing diagnosis based on singular value decomposition and composite squared envelope spectrum[J].Mechanical Systems and Signal Processing,2021,148:107174.
JIANG H,LIN Y,MENG Z.Rolling element bearing fault feature extraction using an optimal chirplet[J].Measurement Science and Technology,2018,29(10):105004.
董绍江,裴雪武,吴文亮,等.基于多层降噪技术及改进卷积神经网络的滚动轴承故障诊断方法[J].机械工程学报,2021,57(1):148-156.
DONG Shaojiang,PEI Xuewu,WU Wenliang,et al.Rolling bearing fault diagnosis method based on multilayer noise reduction technology and improved convolutional neural network[J].Journal of Mechanical Engineering,2021,57(1):148-156.
孟宗,刘子涵,吕蒙.基于改进奇异值分解滤波和谱峭度的滚动轴承故障诊断[J].中国机械工程,2020,31(20):2420-2428.
MENG Zong,LIU Zihan,LÜ Meng.Fault diagnosis for rolling bearings based on improved singular value decomposition and spectral kurtosis[J].China Mechanical Engineering,2020,31(20):2420-2428.
周易文,陈金海,王恒,等.基于噪声辅助信号特征增强的滚动轴承早期故障诊断[J].振动与冲击,2020,39(15):66-73.
ZHOU Yiwen,CHEN Jinhai,WANG Heng,et al.Early fault diagnosis for rolling bearing based on noise-assisted signal feature enhancement[J].Journal of Vibration and Shock,2020,39(15):66-73.
UPADHYAY A,PACHORI R B.Instantaneous voiced/non-voiced detection in speech signals based on variational mode decomposition[J].Journal of the Franklin Institute,2015,352(7):2679-2707.
LIU C,CHENG G,CHEN X,et al.Planetary gears feature extraction and fault diagnosis method based on VMD and CNN[J].Sensors,2018,18(5):1523.
丁承君,冯玉伯,王曼娜.基于变分模态分解与深度卷积神经网络的滚动轴承故障诊断[J].振动与冲击,2021,40(2):287-296.
DING Chengjun,FENG Yubo,WANG Manna.Rolling bearing fault diagnosis using variational mode decomposition and deep convolutional neural network[J].Journal of Vibration and Shock,2021,40(2):287-296.
HE M,HE D.Deep learning based approach for bearing fault diagnosis[J].IEEE Transactions on Industry Applications,2017,53(3):3057-3065.
JIANG Q,CHANG F,SHENG B.Bearing fault classification based on convolutional neural network in noise environment[J].IEEE Access,2019,7:69795-69807.
SHUUJI M,SONG X,LIAO Z,et al.Low-speed bearing fault diagnosis based on improved statistical filtering and convolutional neural network[J].Measurement Science and Technology,2021,32(11):115009.
HUANG S,TANG J,DAI J,et al.Signal status recognition based on 1DCNN and its feature extraction mechanism analysis[J].Sensors,2019,19(9):1-19.
ZHANG X,HAN P,XU L,et al.Research on bearing fault diagnosis of wind turbine gearbox based on 1DCNN-PSO-SVM[J].IEEE Access,2020,8:192248-192258.
王琇峰,文俊.基于噪声信号和改进VMD的滚动轴承故障诊断[J].噪声与振动控制,2021,41(2):118-124.
WANG Xiufeng,WEN Jun.Rolling bearing fault diagnosis based on noise signal and improved VMD[J].Noise and Vibration Control,2021,41(2):118-124.
叶壮,余建波.基于多通道一维卷积神经网络特征学习的齿轮箱故障诊断方法[J].振动与冲击,2020,39(20):55-66.
YE Zhuang,YU Jianbo.Gearbox fault diagnosis based on feature learning of multi-channel one dimensional convolutional neural network[J].Journal of Vibration and Shock,2020,39(20):55-66.
Case Western Reserve University.The case western reserve university bearing data center seeded fault testdata [EB/OL].[2016-06-10].https://engineering.case.edu/bearingdatacenter/download-data-filehttps://engineering.case.edu/bearingdatacenter/download-data-file.
XU Y,LI C,XIE T,et al.Intelligent diagnosis of subway traction motor bearing fault based on improved stacked denoising autoencoder[J].Shock and Vibration,2021(1):1-9.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构