1.江苏师范大学 工程实训中心, 江苏 徐州 221116
2.中国矿业大学 机电工程学院, 江苏 徐州 221116
徐乐(1990— ),男,江苏宿迁人,博士,实验师;研究方向为设备运行状态监测与控制。
扫 描 看 全 文
徐乐,李伟,张博等.基于LMD能量熵的齿轮箱故障诊断研究[J].机械传动,2022,46(10):24-29.
Xu Le,Li Wei,Zhang Bo,et al.Research on Gearbox Fault Diagnosis Based on LMD Energy Entropy[J].Journal of Mechanical Transmission,2022,46(10):24-29.
徐乐,李伟,张博等.基于LMD能量熵的齿轮箱故障诊断研究[J].机械传动,2022,46(10):24-29. DOI: 10.16578/j.issn.1004.2539.2022.10.004.
Xu Le,Li Wei,Zhang Bo,et al.Research on Gearbox Fault Diagnosis Based on LMD Energy Entropy[J].Journal of Mechanical Transmission,2022,46(10):24-29. DOI: 10.16578/j.issn.1004.2539.2022.10.004.
针对小样本情况下齿轮箱复合故障特征难以识别的问题,提出了基于局部均值分解(Local mean decomposition,LMD)能量熵的齿轮箱故障诊断方法。利用LMD方法对齿轮箱振动信号进行处理,得到若干个PF分量;利用不同状态下齿轮箱振动信号在频域区间内分布不均的特性,计算出分量能量在频域区间离散的值,即LMD能量熵;通过不同状态下LMD能量熵的分布进行了齿轮箱故障分类。结果显示,在小样本情况下,基于LMD能量熵方法能够精确地对齿轮箱故障类型进行特征提取和故障诊断,也表明了该方法对齿轮箱故障诊断的优越性。
Aiming at the problem that it is difficult to identify the composite fault characteristics of gearboxes in the case of small samples, a local mean decomposition(LMD) gearbox fault diagnosis method based on energy entropy is proposed. The LMD method is used to process the gearbox vibration signal to obtain several PF components;the dispersion value of component energy in the frequency domain is calculated using the uneven distribution of gearbox vibration signals in different states, which is the LMD energy entropy; the gearbox fault classification is carried out through the distribution of LMD energy entropy in different states. The experimental results show that in the case of small samples, the feature extraction and fault diagnosis of gearbox fault types can be accurately carried out based on the LMD energy entropy method, which also shows the superiority of this method in gearbox fault diagnosis.
齿轮箱局部均值分解能量熵故障诊断
GearboxLocal mean decompositionEnergy entropyFault diagnosis
张倩,王涛,赵婕茹,等.基于局部均值分解的布里渊光时域分析传感系统降噪算法[J].光学学报,2021,41(13):78-86.
ZHANG Qian,WANG Tao,ZHAO Jieru,et al.Denoising algorithm for brillouin optical time-domain analysis sensing systems based on local mean decomposition[J].Acta Optica Sinica,2021,41(13):78-86.
康伟,刘光辉,董祯,等.基于奇异谱和冗余提升小波分析的齿轮箱故障诊断[J].机械传动,2018,42(4):170-172.
KANG Wei,LIU Guanghui,DONG Zhen,et al.Fault diagnosis of gearbox based on singular spectrum and redundant lifting wavelet analysis[J].Journal of Mechanical Transmission,2018,42(4):170-172.
白杨溪,陈洪月,陈洪岩,等.光滑凝聚函数小波算法在采煤机截齿载荷去噪中的应用[J].机械科学与技术,2020,39(12):1944-1951.
BAI Yangxi,CHEN Hongyue,CHEN Hongyan,et al.Application of smooth aggregate function wavelet algorithm in denoising of shearer pick load[J].Mechanical Science and Technology for Aerospace Engineering,2020,39(12):1944-1951.
郑近德,苏缪涎,潘海洋,等.自适应噪声加权优选经验模态分解及其在机械故障诊断中的应用[J].振动工程学报,2021,34(4):869-878.
ZHENG Jinde,SU Miuxian,PAN Haiyang,et al.Weighted mean-optimized empirical mode decomposition with adaptive noise and its applications in mechanical fault diagnosis[J].Journal of Vibration Engineering,2021,34(4):869-878.
WANG L M,SHAO Y M.Fault feature extraction of rotating machinery using a reweighted complete ensemble empirical mode decomposition with adaptive noise and demodulation analysis[J].Mechanical Systems and Signal Processing,2020,138:106545.1-106545.20.
于耀庭,何芝仙,时培成.能量法计算齿根具有裂纹的齿轮啮合刚度[J].机械科学与技术,2021,40(5):716-720.
YU Yaoting,HE Zhixian,SHI Peicheng.Calculation of gear mesh stiffness of cracked dedendum via energy method[J].Mechanical Science and Technology for Aerospace Engineering,2021,40(5):716-720.
SMITH J S.The local mean decomposition and its application to EEG perception data[J].Journal of the Royal Society Interface,2005,2(5):443-454.
程军圣,杨宇,于德介.局部均值分解方法及其在齿轮故障诊断中的应用[J].振动工程学报,2009,22(1):76-84.
CHENG Junsheng,YANG Yu,YU Dejie.The local mean decomposition method and its application to gear fault diagnosis[J].Journal of Vibration Engineering,2009,22(1):76-84.
李慧梅,杨英杰,封会娟.基于改进LMD的齿轮故障特征增强方法[J].机床与液压,2019,47(19):196-199.
LI Huimei,YANG Yingjie,FENG Huijuan.Enhancement method of gear fault feature based on improved LMD[J].Machine Tool & Hydraulics,2019,47(19):196-199.
HOSEINZADEH M S,KHADEM S E,SADOOGHI M S.Modifying the Hilbert-Huang transform using the nonlinear entropy-based features for early fault detection of ball bearings[J].Applied Acoustics,2019,150:313-324.
周小龙,张耀娟,王尧,等.VMD复合熵值法在齿轮故障诊断中的应用[J].组合机床与自动化加工技术,2021(2):43-46.
ZHOU Xiaolong,ZHANG Yaojuan,WANG Yao,et al.Application of VMD compound entropy method in gear fault diagnosis[J].Modular Machine Tool & Automatic Manufacturing Technique,2021(2):43-46.
蒋玲莉,谭鸿创,李学军,等.基于CEEMDAN排列熵与SVM的螺旋锥齿轮故障识别[J].振动.测试与诊断,2021,41(1):33-40,198-199.
JIANG Lingli,TAN Hongchuang,LI Xuejun,et al.Fault diagnosis of spiral bevel gear based on CEEMDAN permutation entropy and SVM[J].Journal of Vibration,Measurement & Diagnosis,2021,41(1):33-40,198-199.
尚雪梅,徐远纲.PSO优化的最大峭度熵反褶积齿轮箱故障诊断[J].电子测量与仪器学报,2020,34(7):64-72.
SHANG Xuemei,XU Yuangang.Maximum kurtosis entropy deconvolution gearbox fault diagnosis based on PSO[J].Journal of Electronic Measurement and Instrumentation,2020,34(7):64-72.
谢小正,李俊,赵荣珍,等.SVD-LMD联合降噪和TEO的滚动轴承故障诊断[J].机械传动,2021,45(6):104-112.
XIE Xiaozheng,LI Jun.ZHAO Rongzhen,et al.Fault diagnosis of rolling bearings based on SVD-LMD joint de-noising and TEO[J].Journal of Mechanical Transmission,2021,45(6):104-112.
陶然,许有才,和杰,等.基于SSWD优化LMD的高速电梯滚动导靴振动信号特征提取[J].振动与冲击,2021,40(10):196-203.
TAO Ran,XU Youcai,HE Jie,et al.Feature extraction of the vibration signal of a high-speed elevator rolling guide shoe based on SSWD optimizing LMD[J].Journal of Vibration and Shock,2021,40(10):196-203.
李辉,邓奇.基于改进LMD方法的风电机组齿轮箱故障诊断研究[J].自动化仪表,2021,42(3):60-65.
LI Hui,DENG Qi.Study on fault diagnosis of wind turbine gearbox based on improved LMD method[J].Process Automation Instrumentation,2021,42(3):60-65.
邢亚航,郝如江,余忠潇.基于LMD和FastICA的轴承故障诊断研究[J].轴承,2020(5):49-54.
XING Yahang,HAO Rujiang,YU Zhongxiao.Study on fault diagnosis for bearings based on LMD and FastICA[J].Bearing,2020(5):49-54.
詹晓燕,尤祥安,飞景明.基于LMD和GNN-Adaboost的滚动轴承故障严重程度识别[J].测控技术,2019,38(12):52-59.
ZHAN Xiaoyan,YOU Xiang´an,FEI Jingming.Rolling bearing fault severity recognition based on LMD and GNN-Adaboost[J].Measurement & Control Technology,2019,38(12):52-59.
0
浏览量
7
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构