1.河南科技大学 机电工程学院, 河南 洛阳 471003
2.智能数控装备河南省工程实验室, 河南 洛阳 471003
蔡薇薇(1996— ),女,河南临颍人,硕士研究生;主要从事寿命预测研究。
颉潭成(1966— ),男,甘肃天水人,硕士,教授;主要从事智能制造装备等。
扫 描 看 全 文
蔡薇薇,徐彦伟,颉潭成.基于CNN-LSTM的轴承剩余使用寿命预测[J].机械传动,2022,46(10):17-23.
Cai Weiwei,Xu Yanwei,Xie Tancheng.Prediction of Bearing Remaining Service Life Based on CNN-LSTM[J].Journal of Mechanical Transmission,2022,46(10):17-23.
蔡薇薇,徐彦伟,颉潭成.基于CNN-LSTM的轴承剩余使用寿命预测[J].机械传动,2022,46(10):17-23. DOI: 10.16578/j.issn.1004.2539.2022.10.003.
Cai Weiwei,Xu Yanwei,Xie Tancheng.Prediction of Bearing Remaining Service Life Based on CNN-LSTM[J].Journal of Mechanical Transmission,2022,46(10):17-23. DOI: 10.16578/j.issn.1004.2539.2022.10.003.
针对轴承到达服役时间而依然满足使用条件造成的资源浪费问题,提出了一种基于CNN-LSTM的轴承剩余使用寿命预测方法。选取已完成服役工作仍健康的高铁牵引电机轴承为研究对象,搭建高铁牵引电机轴承试验平台并采集其振动信号;建立CNN-LSTM的网络模型,将采集到的振动信号经过傅里叶变换后输入到网络模型中,对其深层特征进行挖掘;最后,通过预测模块实现了对剩余使用寿命的预测。结果显示,所提方法得到的预测值较接近真实值,能够很好地反映出轴承运行中的性能退化趋势。
Aiming at the waste of resources caused by the bearing reaching the service time and still meeting the service conditions, a bearing remaining service life prediction method based on CNN-LSTM is proposed. Firstly, a high-speed railway traction motor bearing which has completed service but is still healthy is selected as the research object, the test platform is built and the bearing vibration signal is collected; secondly, a network model of CNN-LSTM is established; then, the collected vibration signal is input into the network model after Fourier transform, and its deep features are mined; finally, the remaining service life is predicted through the prediction module. The results show that the predicted value obtained by the proposed method is closer to the true value, which can well reflect the performance degradation trend of the bearing in operation.
滚动轴承CNN-LSTM剩余使用寿命预测长短时记忆网络
Rolling bearingCNN-LSTMRemaining service life predictionLong and short term memory network
谢梅,白薇,吴沁媛,等.高铁对经济发展的影响[J].电子科技大学学报,2020,49(6):891-904.
XIE Mei,BAI Wei,WU Qinyuan,et al.Impact of high-speed rail on economic development[J].Journal of University of Electronic Science and Technology of China,2020,49(6):891-904.
刘德昆,李强,王曦,等.动车组轴箱轴承基于实测载荷的寿命预测方法[J].机械工程学报,2016,52(22):45-54.
LIU Dekun,LI Qiang,WANG Xi,et al.Life prediction method of axle box bearing of EMU based on measured load[J].Journal of Mechanical Engineering,2016,52(22):45-54.
叶立强.基于SVR的滚动轴承剩余使用寿命预测方法研究[D].哈尔滨:哈尔滨理工大学,2017:1-2.
YE Liqiang.Research on remaining service life prediction method of rolling bearing based on SVR[D].Harbin:Harbin University of Science and Technology,2017:1-2.
董正.基于AdaBoost_RVM的滚动轴承剩余寿命预测方法研究[D].哈尔滨:哈尔滨理工大学,2018:1-2.
DONG Zheng.Based on AdaBoost_RVM research on residual life prediction method of rolling bearing based on RVM[D].Harbin:Harbin University of Science and Technology,2018:1-2.
LI N P,LEI Y G,LIN J,et al.An improved exponential model for predicting remaining useful life of rolling element bearings[J].IEEE Transactions on Industrial Electronics,2015,62(12):7762-7773.
丁锋,何正嘉,訾艳阳,等.基于设备状态振动特征的比例故障率模型可靠性评估[J].机械工程学报,2009,45(12):89-94.
DING Feng,HE Zhengjia,ZI Yanyang,et al.Reliability evaluation of proportional failure rate model based on equipment state vibration characteristics[J].Journal of Mechanical Engineering,2009,45(12):89-94.
王奉涛,陈旭涛,柳晨曦,等.基于KPCA和WPHM的滚动轴承可靠性评估与寿命预测[J].振动、测试与诊断,2017,37(3):476-483.
WANG Fengtao,CHEN Xutao,LIU Chenxi,et al.Reliability evaluation and life prediction of rolling bearing based on KPCA and WPHM[J].Journal of Vibration,Measurement & Diagnosis,2017,37(3):476-483.
王豪,董广明,陈进.遗传规划提取优化特征在轴承寿命预测中的应用[J].振动工程学报,2021,34(3):626-632.
WANG Hao,DONG Guangming,CHEN Jin.Application of genetic programming to extract optimal features in bearing life prediction[J].Journal of Vibration Engineering,2021,34(3):626-632.
高斯博.基于退化数据的寿命预测中估计问题研究[D].大连:大连理工大学,2016:20-22.
GAO Sibo.Research on estimation in life prediction based on degraded data[D].Dalian:Dalian University of Technology,2016:20-22.
陈法法,杨勇,陈保家,等.基于模糊信息粒化与小波支持向量机的滚动轴承性能退化趋势预测[J].中国机械工程,2016,27(12):1655-1661.
CHEN Fafa,YANG Yong,CHEN Baojia,et al.Prediction of performance degradation trend of rolling bearing based on fuzzy information granulation and wavelet support vector machine[J].China Mechanical Engineering,2016,27(12):1655-1661.
李洪儒,于贺,田再克,等.基于二元多尺度熵的滚动轴承退化趋势预测[J].中国机械工程,2017,28(20):2420-2405.
LI Hongru,YU He,TIAN Zaike,et al.Prediction of rolling bearing degradation trend based on binary multi-scale entropy[J].China Mechanical Engineering,2017,28(20):2420-2405.
MA M,SUN C,CHEN X.Discriminative deep belief networks with ant colony optimization for health status assessment of machine[J].IEEE Transactions on Instrumentation and Measurment,2017,66(12):1-11.
ZHENG J D,CHENG J S,YANG Y,et al.A rolling bearing fault diagnosis method based on multi-scale fuzzy entropy and variable predictive model-based class discrimination[J].Mechanism and Machine Theory,2014,78(16):187-200.
申彦斌,张小丽,夏勇,等.Bi-LSTM神经网络用于轴承剩余使用寿命预测研究[J].振动工程学报,2021,34(2):411-420.
SHEN Yanbin,ZHANG Xiaoli,XIA Yong,et al.Prediction of residual service life of bearings using Bi-LSTM neural network[J].Journal of Vibration Engineering,2021,34(2):411-420.
董绍江,吴文亮,贺坤,等.基于性能衰退评估的轴承寿命状态识别方法研究[J].振动与冲击,2021,40(5):186-192.
DONG Shaojiang,WU Wenliang,HE Kun,et al.Research on bearing life state identification method based on performance degradation evaluation[J].Journal of Vibration and Shock,2021,40(5):186-192.
康守强,邢颖怡,王玉静,等.基于无监督深度模型迁移的滚动轴承寿命预测方法[J].自动化学报,2021:1-11.
KANG Shouqiang,XING Yingyi,WANG Yujing,et al.Rolling bearing life prediction method based on unsupervised depth model migration[J].Acta Automatica Sinica,2021:1-11.
国家铁路局.机车车辆轴承台架试验方法 第2部分:牵引电机滚动轴承:TB/T 3017.2—2016[S].北京:中国铁道出版社,2016.
China Railway Administration.Testing-methods on test machine for rolling bearing of locomotive and rolling stock-Part 2:Traction motors rolling bearing:TB/T 3017.2—2016[S].Beijing:China Railway Publishing House,2016.
JING L,ZHAO M,LI P,et al.A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox[J].Measurement,2017,111:1-10.
柳青秀,马红占,褚学宁,等.基于长短时记忆—自编码神经网络的风电机组性能评估及异常检测[J].计算机集成制造系统,2019,25(12):3209-3219.
LIU Qingxiu,MA Hongzhan,CHU Xuening,et al.Performance evaluation and anomaly detection of wind turbine based on long-term and short-term memory self coding neural network[J].Computer Integrated Manufacturing Systems,2019,25(12):3209-3219.
ZHAO R,YAN R,WANG J,et al.Learning to monitor machine health with convolutional bi-directional LSTM networks[J].Sensors,2017,17(2):273.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构