1.武汉大学 动力与机械学院, 湖北 武汉 430072
2.国能云南新能源有限公司, 云南 昆明 650214
高素杰(1997— ),男,河南南阳人,硕士研究生;研究方向为信号处理和旋转机械故障诊断。
巫世晶(1963— ),男,江西赣州人,教授,博士生导师;研究方向为结构动力学、机电液系统集成控制、能源动力装备设计制造技术、设备状态监测与故障诊断等。
扫 描 看 全 文
高素杰,巫世晶,周建华等.基于LMD排列熵和BP神经网络的行星齿轮箱故障诊断方法[J].机械传动,2022,46(10):10-16.
Gao Sujie,Wu Shijing,Zhou Jianhua,et al.Fault Diagnosis Method of Planetary Gearboxes Based on LMD Permutation Entropy and BP Neural Network[J].Journal of Mechanical Transmission,2022,46(10):10-16.
高素杰,巫世晶,周建华等.基于LMD排列熵和BP神经网络的行星齿轮箱故障诊断方法[J].机械传动,2022,46(10):10-16. DOI: 10.16578/j.issn.1004.2539.2022.10.002.
Gao Sujie,Wu Shijing,Zhou Jianhua,et al.Fault Diagnosis Method of Planetary Gearboxes Based on LMD Permutation Entropy and BP Neural Network[J].Journal of Mechanical Transmission,2022,46(10):10-16. DOI: 10.16578/j.issn.1004.2539.2022.10.002.
针对行星齿轮箱故障诊断过程中的故障特征向量区分度差、诊断成功率不够高等问题,提出了一种基于局部均值分解(Local mean decomposition,LMD)排列熵和BP神经网络结合的方法。对原始信号进行LMD,获得包含主要信息的PF分量,计算排列熵值,构造特征向量,利用提取的特征向量训练BP神经网络,完成故障模式识别。以EMD排列熵方法和无量纲分析方法作为对比组,实验验证说明,提出方法提取到的不同工况的特征向量区分度更强,故障诊断效果更好;且当训练组数发生变化时,提出方法的综合表现更优秀。
In view of the problems of poor discrimination of fault feature vectors extracted in the process of fault diagnosis of planetary gearboxes and insufficient diagnosis success rate, a method based on Local Mean Decomposition(LMD) permutation entropy and BP neural network is proposed. Through the LMD decomposition of the original signal, the PF components containing the main information are obtained, and the permutation entropy values are calculated to construct the feature vector. The extracted feature vectors are used to train the BP neural network and complete the failure pattern recognition test. Taking the EMD permutation entropy method and the non-dimensional analysis method as the comparison groups, the experiment proves that the feature vectors extracted from different working conditions with this method are more distinguishable, and the fault diagnosis effect is better. Moreover, this method shows better comprehensive performance when the number of training groups changes.
行星齿轮箱故障诊断局部均值分解排列熵BP神经网络
Planetary gearboxFault diagnosisLocal mean decompositionPermutation entropyBP neural network
张宁,魏秀业,徐晋宏.基于LMD样本熵与ELM的行星齿轮箱故障诊断[J].机械传动,2020,44(4):152-157.
ZHANG Ning,WEI Xiuye,XU Jinhong.Planetary gearbox fault diagnosis based on LMD sample entropy and ELM[J].Journal of Mechanical Transmission,2020,44(4):152-157.
雷亚国,何正嘉,林京,等.行星齿轮箱故障诊断技术的研究进展[J].机械工程学报,2011,47(19):59-67.
LEI Yaguo,HE Zhengjia,LIN Jing,et al.Research advances of fault diagnosis technique for planetary gearboxe[J].Journal of Mechanical Engineering,2011,47(19):59-67.
张安安,黄晋英,卫洁洁,等.基于EMD-SVD与PNN的行星齿轮箱故障诊断研究[J].机械传动,2018,42(12):160-165.
ZHANG An'an,HUANG Jinying,WEI Jiejie,et al.Research of fault diagnosis of planetary gearbox based on EMD-SVD and PNN[J].Journal of Mechanical Transmission,2018,42(12):160-165.
ROMERO-SILVA R,MARSILLAC E,SHAABAN S,et al.Reducing the variability of inter-departure times of a single-server queueing system-The effects of skewness[J].Computers & Industrial Engineering,2019,135:500-517.
张海潮,吴伟蔚,郑霞君.基于经验模态分解法和Hilbert谱的齿轮箱故障诊断[J].机床与液压,2007(12):174-176.
ZHANG Haichao,WU Weiwei,ZHENG Xiajun.Fault diagnosis in gearbox based on empirical mode decomposition and Hilbert spectrum[J].Machine Tool & Hydraulics,2007(12):174-176.
王涛.基于EEMD的齿轮箱故障特征提取方法研究[D].昆明:昆明理工大学,2016:45-56.
WANG Tao.Research on fault feature extraction method of planetary gear-box based on EEMD[D].Kunming:Kunming University of Science and Technology,2016:45-56.
董治麟,郑近德,潘海洋,等.一种时移多尺度排列熵与ELM相结合的滚动轴承故障诊断方法[J].机械科学与技术,2021,40(10):1523-1529.
DONG Zhilin,ZHENG Jinde,PAN Haiyang,et al.A rolling bearing fault diagnosis method of time-shifted multi-scale permutation entropy combining with ELM[J].Mechanical Science and Technology for Aerospace Engineering,2021,40(10):1523-1529.
程军圣,史美丽,杨宇.基于LMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2010,29(8):141-144.
CHENG Junsheng,SHI Meili,YANG Yu.Fault diagnosis method of rolling bearing based on LMD and neural network[J].Journal of Vibration and Shock,2010,29(8):141-144.
何雷,刘溯奇,蒋婷,等.基于改进LMD与BP神经网络的变速箱故障诊断[J].机械传动,2020,44(1):171-176.
HE Lei,LIU Suqi,JIANG Ting,et al.Gearbox fault diagnosis based on improved LMD and BP neural network[J].Journal of Mechanical Transmission,2020,44(1):171-176.
SHARMA S,TIWARI S K,SINGH S.Integrated approach based on flexible analytical wavelet transform and permutation entropy for fault detection in rotary machines[J].Measurement,2021,169:108389.
蒋玲莉,谭鸿创,李学军,等.基于CEEMDAN排列熵与SVM的螺旋锥齿轮故障识别[J].振动.测试与诊断,2021,41(1):33-40.
JIANG Lingli,TAN Hongchuang,LI Xuejun,et al.Fault identification of spiral bevel gear based on CEEMDAN permutation entropy and SVM[J].Journal of Vibration,Measurement & Diagnosis,2021,41(1):33-40.
HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,1998,454(1971):903-995.
SMITH J S.The local mean decomposition and its application to EEG perception data[J].Journal of the Royal Society Interface,2005,2(5):443-454.
BANDT C ,POMPE B.Permutation entropy:a natural complexity measure for time series[J].Physical Review Letters,2002,88(17):174102.
ZANIN M,ZUNINO L,ROSSO O A,et al.Permutation entropy and its main biomedical and econophysics applications:a review[J].Entropy,2012,14(8):1553-1577.
JIANG J,SHANG P J,ZHANG Z Q,et al.Permutation entropy analysis based on Gini-Simpson index for financial time series[J].Physica A:Statistical Mechanics and its Applications,2017,486:273-283.
魏禹.基于熵值的齿轮箱故障特征提取与早期故障诊断方法研究[D].哈尔滨:哈尔滨工业大学,2019:40-60.
WEI Yu.Investigation of fault feature extraction based on entropy and early fault diagnosis for gearbox[D].Harbin:Harbin Institute of Technology,2019:40-60.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构