1.北京信息科技大学 机电工程学院, 北京 100192
2.北京理工大学 机械与车辆学院, 北京 100081
3.陆军装备部 驻北京地区第一军代室, 北京 100072
冯淦淇(1997— ),男,贵州毕节人,硕士研究生;研究方向为旋转机械故障诊断。
李乐(1980— )女,河北张家口人,博士,教授;研究方向为机械系统设计及数值分析。
扫 描 看 全 文
冯淦淇,李乐,籍永建等.基于改进变分模态分解的齿轮点蚀故障诊断[J].机械传动,2022,46(08):146-155.
Feng Ganqi,Li Le,Ji Yongjian,et al.Gear Pitting Fault Diagnosis Based on Improved Variational Modal Decomposition[J].Journal of Mechanical Transmission,2022,46(08):146-155.
冯淦淇,李乐,籍永建等.基于改进变分模态分解的齿轮点蚀故障诊断[J].机械传动,2022,46(08):146-155. DOI: 10.16578/j.issn.1004.2539.2022.08.023.
Feng Ganqi,Li Le,Ji Yongjian,et al.Gear Pitting Fault Diagnosis Based on Improved Variational Modal Decomposition[J].Journal of Mechanical Transmission,2022,46(08):146-155. DOI: 10.16578/j.issn.1004.2539.2022.08.023.
针对齿轮点蚀故障特征难以提取的问题,提出了一种基于改进变分模态分解的齿轮点蚀故障诊断方法。利用经验模态分解自适应分解的特点,将各分量的能量占比作为有效分量的判断依据,并据此设定变分模态分解算法的模态个数,在此基础上,以变分模态分解分量的排列熵和最小值作为适应度函数,用遗传算法对惩罚因子进行搜索;根据所得结果设置变分模态分解参数,并对齿轮点蚀信号进行处理;筛选合适的本征模态函数进行包络调解,通过包络谱图分析齿轮点蚀故障的特征信息。对齿轮实验信号的分析表明,与现有方法相比,本文中提出的改进变分模态分解算法能够更加准确地识别出齿轮点蚀故障,在传动系统故障诊断方面具有一定实用价值。
Based on an improved variational mode decomposition(VMD) algorithm,a novel gear fitting fault diagnosis method is proposed to overcome the difficulties in extracting the features of gear surface faults. The number of components for VMD is determined by the energy ratios of the components in empirical mode decomposition(EMD). The penalty factor is established with a genetic algorithm(GA) via a fitness function between the permutation entropy and minimum value of VMD components,which determines penalty factors of the VMD. The improved VMD algorithm is used to process the gear surface fault signal. We screen the intrinsic mode function(IMF) for envelope adjustment and analyze the characteristic information of the gear pitting fault through the envelope spectrum. Compared with the current methods,the result of the gear pitting signal we analyze shows the improved VMD algorithm can identify the gear pitting faults more accurately and provide practical application value in the fault diagnosis of transmission systems.
齿轮故障变分模态分解能量占比排列熵特征提取
Gear faultVariational modal decompositionEnergy ratioPermutation entropyFeature extraction
彭鹏,肖体熠,刘涛,等.齿轮传动动态运动精度可靠性分析[J].机械传动,2019,43(5):96-100.
PENG Peng,XIAO Tiyi,LIU Tao,et al.Reliability of dynamic kinematic accuracy for gear transmission[J].Journal of Mechanical Transmission,2019,43(5):96-100.
冯伟,谢小鹏,廖钱生,等.齿轮点蚀破坏中磨损与振动关系的试验研究[J].润滑与密封,2007(11):69-73.
FENG Wei,XIE Xiaopeng,LIAO Qiansheng,et al.Experimental study of relation of wear and vibration in gear pitting failure[J].Lubrication Engineering,2007(11):69-73.
刘放,王衍学.基于多域特征与改进D-S证据理论的齿轮故障智能诊断方法[J].机械传动,2019,43(9):159-165.
LIU Fang,WANG Yanxue.Gear fault diagnosis method based on multi-domain feature and improved D-S evidence theory[J].Journal of Mechanical Transmission,2019,43(9):159-165.
张鲁洋,秦波,尹恒,等.基于ELMD能量熵与AFSA-SVM的行星齿轮箱关键部件故障诊断研究[J].机械传动,2018,42(6):164-170.
ZHANG Luyang,QIN Bo,YIN Heng,et al.Fault diagnosis of planetary gearbox key component based ELMD energy entropy and AFSA-SVM[J].Journal of Mechanical Transmission,2018,42(6):164-170.
HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrun for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London-Series A,1998,454:903-995.
练继建,荣钦彪,董霄峰,等.抑制模态混叠的HHT结构模态参数识别方法研究[J].振动与冲击,2018,37(18):1-8.
LIAN Jijian,RONG Qinbiao,DONG Xiaofeng,et al.Structural model parameter identification method based on an improved HHT for suppressing mode mixing[J].Journal of Vibration and Shock,2018,37(18):1-8.
LI Z P,CHEN J L,ZI Y Y,et al.Independence-oriented VMD to identify fault feature for wheel set bearing fault diagnosis of high speed locomotive[J].Mechanical Systems and Signal Processing,2017,85:512-529.
WU Z H,HUANG N.Ensemble empirical mode decomposition:a noise-assisted data analysis method[J].Advances in Adaptive Data Analysis,2009,1(1):1-41.
YEH J R,SHIEH J S,HUANG N E.Complementary ensemble empirical mode decomposition:a novel noise enhanced data analysis method[J].Advances in Adaptive Data Analysis,2010,2(2):135-156.
SMITH J S.The local mean decomposition and its application to EEG perception data[J].Journal of the Royal Society Interface,2005,2(5):443-454.
ZOSSO D,DRAGOMIRESTSKIY K.Variational mode decomposition[J].IEEE Transactions on Signal Processing,2014,62(3):531-544.
刘珍,郭瑜,伍星.基于自适应噪声消除与自相关峭度图的行星轮轴承内圈故障诊断[J].振动与冲击,2020,39(20):183-189.
LIU Zhen,GUO Yu,WU Xing.Fault diagnosis of planet bearing inner rings based on selfself-adaptive noise cancellation and autogram[J].Journal of Vibration and Shock,2020,39(20):183-189.
唐贵基,刘尚坤.基于VMD和谱峭度的滚动轴承早期故障诊断方法[J].中国测试,2017,43(9):112-117.
TANG Guiji,LIU Shangkun.Incipient fault diagnosis method for rolling bearing based on VMD and spectral kurtosis[J].China Measurement & Test,2017,43(9):112-117.
武英杰.基于变分模态分解的风电机组传动系统故障诊断研究[D].北京:华北电力大学,2016:44-47.
WU Yingjie.Research on fault diagnosis of wind turbine transmission system based on variational mode decomposition[D].Beijing:North China Electric Power University,2016:44-47.
施瑶,王雅静,梅宇,等.基于WPT和参数优化的VMD谐波检测方法[J/OL].电测与仪表,2020:1-6[2020-11-04].https://wap.cnki.net/touch/web/Journal/Article/DCYQ20200709008.htmlhttps://wap.cnki.net/touch/web/Journal/Article/DCYQ20200709008.html
SHI Yao,WANG Yajing,MEI Yu,et al.VMD harmonic detection method based on WPT and parameter optimization[J/OL].Electrical Measurement and Instrumentation,2020:1-6[2020-11-04].https://wap.cnki.net/touch/web/Journal/Article/DCYQ20200709008.htmlhttps://wap.cnki.net/touch/web/Journal/Article/DCYQ20200709008.html
吴守军,冯辅周,吴春志,等.基于VMD-DE的坦克行星变速箱故障诊断方法研究[J].振动与冲击,2020,39(10):170-179.
WU Shoujun,FENG Fuzhou,WU Chunzhi,et al.Research on fault diagnosis method of tank planetary gearbox based on VMD-DE[J].Journal of Vibration and Shock,2020,39(10):170-179.
丁承君,付晓阳,冯玉伯,等.基于参数优化VMD的齿轮箱故障特征提取方法[J].机械传动,2020,44(3):171-176.
DING Chengjun,FU Xiaoyang,FENG Yubo,et al.Fault feature extraction method of gearbox based on parameter optimization VMD[J].Journal of Mechanical Transmission,2020,44(3):171-176.
BANDT C,POMPE B.Permutation entropy:a natural complexity measure for time series[J].Physical Review Letters,2002,88(17):174102.
WU W,LIN T R,TAN A C C.Normalization and source separation of acoustic emission signals for condition monitoring and fault detection of multi-cylinder diesel engines[J].Mechanical Systems and Signal Processing,2015,64-65:479-497.
范高铭.基于变分模态分解的残余应力检测及其评定方法研究[D].长春:长春工业大学,2019:22-27.
FAN Gaoming.Research on residual stress detection and evaluation method based on variational modal decomposition[D].Changchun:Changchun University of Technology,2019:22-27.
范雪飞.江苏千鹏诊断工程有限公司齿轮箱故障模拟试验数据[DB/OL].[2020-12-242020-12-24][2021-06-05].https://download.csdn.net/download/xuemanxinhe/5098401https://download.csdn.net/download/xuemanxinhe/5098401.
FAN Xuefei.Gearbox fault simulation test date of Jiangsu qianpeng diagnostic engineering Co.,Ltd.[DB/OL].[2020-12-242020-12-24][2021-06-05].https://download.csdn.net/download/xuemanxinhe/5098401https://download.csdn.net/download/xuemanxinhe/5098401.
刘洋,唐进元,钱露露.高速齿轮动态传动误差的希尔伯特-黄变换分析[J].机械科学与技术,2017,36(4):504-511.
LIU Yang,TANG Jinyuan,QIAN Lulu.Analyzing dynamic transmission errors of a high-speed gear with the hilbert-huang transform[J].Mechanical Science and Technology for Aerospace Engineering,2017,36(4):504-511.
王鹏飞,胡建中.基于LMD的包络谱特征值在齿轮箱故障诊断中的应用研究[J].机电工程,2016,33(5):542-545.
WANG Pengfei,HU Jianzhong.Application of envelope spectrum characteristics based on LMD to gearbox fault diagnosis[J].Journal of Mechanical & Electrical Engineering,2016,33(5):542-545.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构