1.郑州机械研究所有限公司, 河南 郑州 450001
2.同济大学 机械与能源工程学院, 上海 201804
吴鲁纪(1974— ),男,河南鲁山人,在读博士研究生,研究员;研究方向为齿轮传动与故障诊断。
扫 描 看 全 文
吴鲁纪,秦佳音,李安虎等.机器视觉识别技术在机械传动领域的发展与应用[J].机械传动,2022,46(07):167-176.
Wu Luji,Qin Jiayin,Li Anhu,et al.Development and Application of Machine Vision Recognition Technology in the Field of Mechanical Transmission[J].Journal of Mechanical Transmission,2022,46(07):167-176.
吴鲁纪,秦佳音,李安虎等.机器视觉识别技术在机械传动领域的发展与应用[J].机械传动,2022,46(07):167-176. DOI: 10.16578/j.issn.1004.2539.2022.07.025.
Wu Luji,Qin Jiayin,Li Anhu,et al.Development and Application of Machine Vision Recognition Technology in the Field of Mechanical Transmission[J].Journal of Mechanical Transmission,2022,46(07):167-176. DOI: 10.16578/j.issn.1004.2539.2022.07.025.
阐述了基于机器视觉的图像采集方法及其在多个领域中的应用;介绍了图像处理技术,以齿轮齿面为例,给出了各个方法的处理结果示意图;对多种分类识别技术的特点和应用现状进行综述,并给出了基于卷积神经网络的轴承表面损伤识别案例;最后,对机器视觉识别技术在机械传动领域,如齿轮齿面损伤识别方向的应用及发展趋势做出了展望。
An image acquisition method based on machine vision and its application in many fields are expounded; an image processing technology is introduced,and a schematic diagram of the processing results of each method is given by taking the gear tooth surface as an example; the characteristics of various classification and recognition technologies are summarized; finally,the application and development trend of machine vision recognition technology in the field of mechanical transmission,such as gear tooth surface damage recognition direction,are prospected.
机器视觉图像识别传动零部件发展趋势
Machine visionImage recognitionTransmission partsDevelopment trend
LIANG X,ZUO M J,FENG Z.Dynamic modeling of gearbox faults:a review[J].Mechanical Systems and Signal Processing,2018,98:852-876.
NAHA A,SAMANTA A K,ROUTRAY A,et al.Low complexity motor current signature analysis using sub-nyquist strategy with reduced data length[J].IEEE Transactions on Instrumentation and Measurement,2017,66(12):3249-3259.
WANG Y,XUE C,JIA X,et al.Fault diagnosis of reciprocating compressor valve with the method integrating acoustic emission signal and simulated valve motion[J].Mechanical Systems and Signal Processing,2015,56/57:197-212.
SHIBATA K,TAKAHASHI A,SHIRAI T.Fault diagnosis of rotating machinery through visualisation of sound signals[J].Mechanical Systems and Signal Processing,2000,14(2):229-241.
HAN C F,HE H Q,WEI C C,et al.Techniques developed for fault diagnosis of long-range running ball screw drive machine to evaluate lubrication condition[J].Measurement,2018,126:274-288.
CIABATTONI L,FERRACUTI F,FREDDI A,et al.Statistical spectral analysis for fault diagnosis of rotating machines[J].IEEE Transactions on Industrial Electronics,2018,65(5):4301-4310.
林勇.基于振动谱图像识别的故障诊断方法研究[D].杭州:浙江大学,2009:1-2.
LIN Yong.Research on fault diagnosis method based on image recognition of vibration spectra[D].Hangzhou:Zhejiang University,2009:1-2.
魏维格.基于图像识别的齿轮故障诊断方法研究[D].郑州:郑州大学,2016:11-59.
WEI Weige.The research of gear fault diagnosis based on image recognition[D].Zhengzhou:Zhengzhou University,2016:11-59.
SUN W F,YAO B,ZENG N Y,et al.An intelligent gear fault diagnosis methodology using a complex wavelet enhanced convolutional neural network[J].Materials,2017,10(7):790.
任川.应用刚柔耦合模型和图像识别的行星齿轮箱微弱故障诊断[D].太原:中北大学,2021:14-64.
REN Chuan.Weak fault diagnosis of planetary gearbox using rigid-flexible coupling model and image recognition[D].Taiyuan:North University of China,2021:14-64.
ZHANG X W,DING Y Q,LV A Y,et al.A vision inspection system for the surface defects of strongly reflected metal based on multi-class SVM[J].Expert Systems with Applications:An International Journal,2011,38(5):5930-5939.
何小华.基于磨损识别的齿轮故障诊断研究[D].武汉:武汉工程大学,2012:13-80.
HE Xiaohua.Research on gear fault diagnosis based on wear identification[D].Wuhan:Wuhan Institute of Technology,2012:13-80.
陈麒麟,王东兴,林建钢,等.冲压磨削平板类零件的表面缺陷检测[J].锻压技术,2020,45(6):168-174.
CHEN Qilin,WANG Dongxing,LIN Jian'gang,et al.Surface defect detection on stamping and grinding flat parts[J].Forging and Stamping Technology,2020,45(6):168-174.
徐留明,吴金文,于磊磊.基于机器视觉的机械零件表面符号信息检测与识别[J].九江学院学报(自然科学版),2021,36(3):38-41.
XU Liuming,WU Jinwen,YU Leilei.Detection and recognition of symbol information on the surface of mechanical parts based on machine vision[J].Journal of Jiujiang University(Natural Science Edition),2021,36(3):38-41.
江录春,王稼祥,陈正涛,等.基于机器视觉的车身缺陷识别与分类方法[J].机械设计与研究,2021,37(3):137-142.
JIANG Luchun,WANG Jiaxiang,CHEN Zhengtao,et al.Vehicle body defect detection and classification based on machine vision[J].Machine Design and Research,2021,37(3):137-142.
邓荣琦,朱翠霞.机器视觉技术在机械制造及其自动化中的应用[J].电子技术与软件工程,2021(18):108-109.
DENG Rongqi,ZHU Cuixia.Application of machine vision technology in machinery manufacturing and automation[J].Electronic Technology and Software Engineering,2021(18):108-109.
SALLOOM M Y.Machine vision application in manufacturing:inspection of dimensions[J].Iraqi Journal of Mechanical and Material Engineering,2016,16(3):268.
王萍.基于机器视觉的阴极铜表面质量检测系统的研究[D].昆明:昆明理工大学,2017:11-19.
WANG Ping.Research on surface quality inspection and sorting system of cathode copper based on machine vision[D].Kunming:Kunming University of Science and Technology,2017:11-19.
MORU D K,BORRO D.Analysis of different parameters of influence in industrial cameras calibration processes[J].Measurement,2020,171(1/2):108750.
张祥.高帧率视频图像获取与实时处理系统硬件设计[D].成都:西南交通大学,2014:6-13.
ZHANG Xiang.The hardware design for high frame rate of video image capture and real-time processing system[D].Chengdu:Southwest Jiaotong University,2014:6-13.
WU K,JIN Z,WANG W,et al.High-speed image acquisition technology in quality detection of workpiece surface[C]//Optical Metrology and Inspection for Industrial Applications IV.SPIE,2016:411-416.
李天敏.基于CCD摄像机石材表面颜色识别方法研究[D].沈阳:沈阳建筑大学,2019:7-14.
LI Tianmin.Research on color recognition method of stone surface based on CCD camera[D].Shenyang:Shenyang Jianzhu University,2019:7-14.
YU H L,LIANG Y L,LIANG H,et al.Recognition of wood surface defects with near infrared spectroscopy and machine vision[J].Journal of Forestry Research,2019,30(6):2379-2386.
DANG A T,HSU Q C,TRUONG T T.A simple method for dimensional measurement of ring-shaped objects using image processing technique[J].The International Journal of Advanced Manufacturing Technology,2021,115(11):3657-3678.
LI M,CHENG D,YANG X,et al.High precision slope deformation monitoring by UAV with industrial photogrammetry[J].IOP Conference Series:Earth and Environmental Science,2021,636:012015.
庞博.利用图像识别进行机械零件质量检测的方法研究[J].商丘职业技术学院学报,2019,18(5):71-74.
PANG Bo.Research on the method of using image recognition to detect the quality of mechanical parts[J].Journal of Shangqiu Vocational and Technical College,2019,18(5):71-74.
APPIAH O,HAYFRON-ACQUAH J B,ASANTE M.An effective algorithm for denoising salt-and-pepper noise in real-time[J].Asian Journal of Research in Computer Science,2020:14-27.
李瑞琦,鲍艳,卢建军,等.一种新型隧道图像去噪方法——基于小波变换及中值滤波的隧道图像去噪方法研究[J].现代信息科技,2020,4(22):81-85.
LI Ruiqi,BAO Yan,LU Jianjun,et al.A new denoising method for tunnel image-Research on tunnel image denoising method based on wavelet transform and median filter[J].Modern Information Technology,2020,4(22):81-85.
CHO D,BUI T D.Multivariate statistical modeling for image denoising using wavelet transforms[J].Signal Processing:Image Communication,2005,20(1):77-89.
TORRES-HUITZIL C.Fast hardware architecture for grey-level image morphology with flat structuring elements[J].IET Image Processing,2014,8(2):112-121.
肖俊建,王慧英.图像处理技术在齿轮缺陷检测中的应用[J].机械传动,2009,33(2):98-100.
XIAO Junjian,WANG Huiying.Application of image processing technology in gear defect detection[J].Journal of Mechanical Transmission,2009,33(2):98-100.
COOLEY J W,TUKEY J W.An algorithm for the machine calculation of complex Fourier series[J].Mathematics of Computation,1965,19(90):297-301.
REN Z,FANG F,YAN N,et al.State of the art in defect detection based on machine vision[J].International Journal of Precision Engineering and Manufacturing-Green Technology,2022,9:661-691.
BAI J,FENG X C.Fractional-order anisotropic diffusion for image denoising[C].IEEE Transactions on Image Processing,2007,16(10):2492-2502.
范贝贝,王弼虎,周鹏成,等.人工智能识别的关键技术分析[J].电子测试,2021(15):81-82.
FAN Beibei,WANG Bihu,ZHOU Pengcheng,et al.Analysis of key technologies of artificial intelligence recognition[J].Electronic Test,2021(15):81-82.
LOWE D G.Object recognition from local scale-invariant features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision,1999(2):1150-1157.
LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
周国栋.一种基于机器视觉的表面缺陷快速检测方法[J].机电工程技术,2021,50(8):42-44.
ZHOU Guodong.A fast detection method of surface defects based on machine vision[J].Mechanical and Electrical Engineering Technology,2021,50(8):42-44.
魏利胜,丁坤,段志达,等.融合单应性约束SIFT特征匹配的轴承滚子检测[J].电子测量与仪器学报,2019,33(9):107-113.
WEI Lisheng,DING Kun,DUAN Zhida,et al.Bearing roller detection based on SIFT feature matching with homography constraints[J].Journal of Electronic Measurement and Instrumentation,2019,33(9):107-113.
DUNDERDALE C,BRETTENNY W,CLOHESSY C,et al.Photovoltaic defect classification through thermal infrared imaging using a machine learning approach[J].Progress in Photovoltaics:Research and Applications,2020,28(3):177-188.
甘小红,覃志东,蔡勇,等.一种基于SIFT的改进优化特征匹配算法[J].智能计算机与应用,2021,11(11):5-9.
GAN Xiaohong,QIN Zhidong,CAI Yong,et al.An optimized image feature matching algorithm based on SIFT[J].Intelligent Computer and Applications,2021,11(11):5-9.
HARALICK R M,SHANMUGAM K,DINSTEIN I.Textural features for image classification[J].Studies in Media and Communication,1973,SMC-3(6):610-621.
刘兵兵,李伟凡,赵仕宇,等.金属表面特征提取方法研究进展[J].机电技术,2016(2):139-141.
LIU Bingbing,LI Weifan,ZHAO Shiyu,et al.Research progress of metal surface feature extraction methods[J].Electromechanical Technology,2016(2):139-141.
RAHEJA J L,KUMAR S,CHAUDHARY A.Fabric defect detection based on GLCM and Gabor filter:a comparison[J].Optik-International Journal for Light and Electron Optics,2013,124(23):6469-6474.
ZHU D,PAN R,GAO W,et al.Yarn-dyed fabric defect detection based on autocorrelation function and GLCM[J].Autex Research Journal,2015,15(3):226-232.
景军锋,邓淇英,李鹏飞,等.LBP和GLCM融合的织物组织结构分类[J].电子测量与仪器学报,2015,29(9):1406-1413.
JING Junfeng,DENG Qiying,LI Pengfei,et al.Fabric structure classification based on LBP and GLCM fusion[J].Journal of Electronic Measurement and Instrumentation,2015,29(9):1406-1413.
CORTES C,VAPNIK V.Support vector machines[J].Machine Learning,1995,20:273-293.
汤勃,孔建益,伍世虔.机器视觉表面缺陷检测综述[J].中国图象图形学报,2017,22(12):1640-1663.
TANG Bo,KONG Jianyi,WU Shiqian.Review of surface defect detection based on machine vision[J].Journal of Image and Graphics,2017,22(12):1640-1663.
LI T S,HUANG C L.Defect spatial pattern recognition using a hybrid SOM-SVM approach in semiconductor manufacturing[J].Expert Systems with Applications,2009,36(1):374-385.
ZHANG X,GONG F,XU L.Inspection of surface defects in copper strip using multivariate statistical approach and SVM[J].International Journal of Computer Applications in Technology,2012,43(1):44-50.
HUANG Y,ZHANG Z,CHEN H B,et al.EMD-based pulsed TIG welding process porosity defect detection and defect diagnosis using GA-SVM[J].Journal of Materials Processing Technology,2017,239:92-102.
腾帅.基于深度学习的结构损伤识别方法研究[D].广州:广东工业大学,2020:11-15.
TENG Shuai.Research on structural damage detection method based on deep learning[D].Guangzhou:Guangdong University of Technology,2020:11-15.
YANG J,YANG G.Modified convolutional neural network based on dropout and the stochastic gradient descent optimizer[J].Algorithms,2018,11(3):28.
HINTON G E,OSINDERO S,TEH Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554.
PARK J,YI D,JI S.Analysis of recurrent neural network and predictions[J].Symmetry,2020,12(4):615.
GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial networks[J].Communications of the ACM,2020,63(11):139-144.
HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507.
DAHMEN T,TRAMPERT P,BOUGHORBEL F,et al.Digital reality:a model-based approach to supervised learning from synthetic data[J].AI Perspectives,2019,1(1):2.
蓝金辉,王迪,申小盼.卷积神经网络在视觉图像检测的研究进展[J].仪器仪表学报,2020,41(4):167-182.
LAN Jinhui,WANG Di,SHEN Xiaopan.Research progress on visual image detection based on convolutional neural network[J].Chinese Journal of Scientific Instrument,2020,41(4):167-182.
GAO Y,YANG X.Research on deep convolutional neural network in damage identification of truss structure[J].IOP Conference Series:Earth and Environmental Science,2021,791(1):012033.
LONG Y,ZHOU W,LUO Y.A fault diagnosis method based on one-dimensional data enhancement and convolutional neural network[J].Measurement,2021,180:109532.
LI D,XIE Q,YU Z,et al.Sewer pipe defect detection via deep learning with local and global feature fusion[J].Automation in Construction,2021,129:103823.
LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):318-327.
LIU Y H.Feature extraction and image recognition with convolutional neural networks[J].Journal of Physics:Conference Series,2018,1087:062032.
LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communication of the ACM,2017,60(6):84-90.
SZEGEDY C,IOFFE S,VANHOUCKE V,et al.Inception-v4,inception-ResNet and the impact of residual connections on learning[C]//Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17),2017:4278-4284.
SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556[cs],2015:1-14.
HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),June 27-30,2016,Las Vegas,NV,USA.New York:IEEE,2016:770-778.
李军锋.基于深度学习的电力设备图像识别及应用研究[D].广州:广东工业大学,2018:54-104.
LI Junfeng.Research on electric equipment image recognition and its application based on deep learning[D].Guangzhou:Guangdong University of Technology,2018:54-104.
刘剑,赵悦,徐萌,等.基于Fast R-CNN的动态分区多轿厢电梯调度研究[J].控制工程,2019,26(2):208-214.
LIU Jian,ZHAO Yue,XU Meng,et al.Multi-car elevator systems using dynamic zoning based on Fast R-CNN[J].Control Engineering of China,2019,26(2):208-214.
JIANG W,WANG C,ZOU J,et al.Application of deep learning in fault diagnosis of rotating machinery[J].Processes,2021,9(6):919.
LIU J,YANG Z,LIU Y,et al.Hyperspectral remote sensing images deep feature extraction based on mixed feature and convolutional neural networks[J].Remote Sensing,2021,13(13):2599.
王四军,秦毅,奚德君.基于改进U-Net网络的齿轮点蚀测量研究[J].控制与决策,2021:1-7.
WANG Sijun,QIN Yi,XI Dejun.Research on gear pitting measurement based on improved U-Net network[J].Control and Decision,2021:1-7.
耿佩.滚动轴承套圈缺料和保持架铆合缺陷视觉检测算法研究[D].南昌:华东交通大学,2021:9-38.
GENG Pei.Research on visual detection algorithms for rolling bearing rings lack of material and cage riveting defect[D].Nanchang:East China Jiaotong University,2021:9-38.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构