1.广西机电职业技术学院 实训工程学院, 广西 南宁 530007
2.广西民族大学 化工学院, 广西 南宁 530007
3.广西建设工程机电设备招标中心股份公司, 广西 南宁 530007
蒋洪(1967— ),男,江苏南京人,副教授;主要研究方向为电工电子技术应用。
扫 描 看 全 文
蒋洪,冯宇,傅荣.基于特征可视化和深度自适应网络的轴承故障诊断[J].机械传动,2022,46(07):158-166.
Jiang Hong,Feng Yu,Fu Rong.Bearing Fault Diagnosis based on Feature Visualization and Depth Adaptive Network[J].Journal of Mechanical Transmission,2022,46(07):158-166.
蒋洪,冯宇,傅荣.基于特征可视化和深度自适应网络的轴承故障诊断[J].机械传动,2022,46(07):158-166. DOI: 10.16578/j.issn.1004.2539.2022.07.024.
Jiang Hong,Feng Yu,Fu Rong.Bearing Fault Diagnosis based on Feature Visualization and Depth Adaptive Network[J].Journal of Mechanical Transmission,2022,46(07):158-166. DOI: 10.16578/j.issn.1004.2539.2022.07.024.
针对轴承故障诊断中,特征提取环节严重依赖人工经验及专家知识的问题,提出了一种基于格拉姆角场(Gramian angle field,GAF)变换和自适应深度网络的轴承故障诊断方法。首先,通过经验模态分解方法对采集信号进行分析,通过马氏距离度量方法有效地确定本征模函数(Intrinsic mode functions,IMFs),将染噪信号与原始信号的相似模态分量进行挑选,以提高染噪信号信噪比,剔除不同类别信号的相似模态分量,突出信号特征;然后,利用选定的IMFs将信号重构,并基于GAF变换将重构信号可视化;最后,利用深度自适应网络进行特征学习和状态识别。结果表明,所提方法的准确率达到94.97%,优于常见的振动信号故障诊断方法;且所提方法对于噪声也能很好地抑制,具有较好的鲁棒性,为轴承的智能化和精确化诊断提供了合理思路。
Aiming at the problem that feature extraction in bearing fault diagnosis needs to rely heavily on manual experience and expert knowledge,a bearing fault diagnosis method based on Gramian angle field(GAF) transformation and adaptive depth network is proposed. Firstly,the collected signals are analyzed by empirical mode decomposition method, and the Intrinsic mode functions(IMFs) are effectively determined by Mahalanobis distance measurement method. It can not only select the similar modal components of the noisy signal and the original signal to improve the signal-to-noise ratio of the noisy signal,but also eliminate the similar modal components of different types of signals to highlight the signal characteristics; then,the signal is reconstructed by using the selected IMFs,and the reconstructed signal is visualized based on GAF transform; finally,the depth adaptive network is used for feature learning and state recognition. The results show that the accuracy of the proposed method is 94.97%,which is better than the common vibration signal fault diagnosis methods,and the proposed method can also suppress the noise and has good robustness,which provides a reasonable idea for the intelligent and accurate diagnosis of bearings.
轴承格拉姆角变换深度自适应网络故障诊断
BearingsGramian angle transformationDeep adaptive networkFault diagnosis
邱晓梅.滚动轴承的故障诊断与剩余寿命预测方法研究[D].淄博:山东理工大学,2019:1-2.
QIU Xiaomei.Research on fault diagnosis and residual life prediction method of rolling bearing[D].Zibo:Shandong University of Technology,2019:1-2.
罗忠辉,薛晓宁,王筱珍,等.小波变换及经验模式分解方法在电机轴承早期故障诊断中的应用[J].中国电机工程学报,2005(14):125-129.
LUO Zhonghui,XUE Xiaoning,WANG Xiaozhen,et al.Application of wavelet transform and empirical mode decomposition in early fault diagnosis of motor bearing[J].Proceedings of the CSEE,2005(14):125-129.
陈向民,于德介,李蓉.基于信号共振稀疏分解与重分配小波尺度谱的转子碰摩故障诊断方法[J].振动与冲击,2013,32(13):27-33.
CHEN Xiangmin,YU Dejie,LI Rong.Rub-impact diagnosis of rotors with resonance-based sparse signal decomposition and reassigned wavelet scalogram[J].Journal of Vibration and Shock,2013,32(13):27-33.
刘长良,武英杰,甄成刚.基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J].中国电机工程学报,2015,35(13):3358-3365.
LIU Changliang,WU Yingjie,ZHEN Chenggang.Rolling bearing fault diagnosis based on variational mode decomposition and fuzzy C means clustering[J].Proceedings of the CSEE,2015,35(13):3358-3365.
陈祥龙,冯辅周,张兵志,等.基于平方包络谱相关峭度的最优共振解调诊断滚动轴承故障[J].机械工程学报,2018,54(21):90-100.
CHEN Xianglong,FENG Fuzhou,ZHANG Bingzhi,et al.Fault diagnosis of rolling bearing by optimal resonance demodulation based on square envelope spectral correlation kurtosis[J].Journal of Mechanical Engineering,2018,54(21):90-100.
赵妍,李志民,李天云.一种基于谱峭度的异步电机故障诊断方法[J].电工技术学报,2014,29(5):189-196.
ZHAO Yan,LI Zhimin,LI Tianyun.A fault diagnosis method of induction motor based on spectral kurtosis[J].Transactions of China Electrotechnical Society,2014,29(5):189-196.
MOSHREFZADEH A,FASANA A.The autogram:an effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis[J].Mechanical Systems & Signal Processing.,2018,105:294-318.
周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251.
ZHOU Feiyan,JIN Linpeng,DONG Jun.Review of convolutional neural networks[J].Chinese Journal of Computers,2017,40(6):1229-1251.
孙志军,薛磊,许阳明,等.深度学习研究综述[J].计算机应用研究,2012,29(8):2806-2810.
SUN Zhijun,XUE Lei,XU Yangming,et al.Review of deep learning research[J].Application Research of Computers,2012,29(8):2806-2810.
李彦冬,郝宗波,雷航.卷积神经网络研究综述[J].计算机应用,2016,36(9):2508-2515.
LI Yandong,HAO Zongbo,LEI Hang.Review of convolutional neural networks[J].Journal of Computer Application,2016,36(9):2508-2515.
武海彬,卜明龙,刘圆圆,等.基于SDP图像与VGG网络的旋转机械转子故障诊断研究[J].机电工程,2020,37(9):1069-1074.
WU Haibin,BU Minglong,LIU Yuanyuan,et al.Research on rotor fault diagnosis of rotating machinery based on SDP image and VGG network[J].Journal of Mechanical & Electrical Engineering,2020,37(9):1069-1074.
WANG H,XU J,YAN R,et al.A new intelligent bearing fault diagnosis method using SDP representation and SE-CNN[J].IEEE Transactions on Instrumentation and Measurement,2020,69(5):2377-2389.
LIU Y Z,ZOU Y S,JIANG Y L,et al.A novel method for diagnosis of bearing fault using hierarchical multitasks convolutional neural networks[J].Shock and Vibration,2020(13):1-14.
WANG H,LI S,SONG L,et al.A novel convolutional neural network based fault recognition method via image fusion of multi-vibration-signals[J].Computers in Industry,2019,105:182-190.
张前图,房立清.基于图像处理的滚动轴承故障特征提取研究[J].机械传动,2015,39(5):42-45.
ZHANG Qiantu,FANG Liqing.Fault feature extraction of rolling bearing based on image processing[J].Journal of Mechanical Transmission,2015,39(5):42-45.
李舜酩,郭海东,李殿荣.振动信号处理方法综述[J].仪器仪表学报,2013,34(8):1907-1915.
LI Shunming,GUO Haidong,LI Dianrong.Overview of vibration signal processing methods[J].Chinese Journal of Scientific Instrument,2013,34(8):1907-1915.
李兆飞.振动故障分形特征提取及诊断方法研究[D].重庆:重庆大学,2013:25-36.
LI Zhaofei.Research on fractal feature extraction and diagnosis method of vibration fault[D].Chongqing:Chongqing University,2013:25-36.
吴景丰.汽轮发电机组常见振动故障诊断的研究[D].大连:大连理工大学,2003:38-53.
WU Jingfeng.Research on common vibration fault diagnosis of steam turbine generator unit[D].Dalian:Dalian University of Technology,2003:38-53.
孙一航,武建文,廉世军,等.结合经验模态分解能量总量法的断路器振动信号特征向量提取[J].电工技术学报,2014,29(3):228-236.
SUN Yihang,WU Jianwen,LIAN Shijun,et al.Feature vector extraction of circuit breaker vibration signal based on empirical mode decomposition and total energy method[J].Transactions of China Electrotechnical Society,2014,29(3):228-236.
LEI Y G,JIA F,LIN J,et al.An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data[J].IEEE Transactions on Industrial Electronics,2016,63(5):3137-3147.
赵妙颖,许刚.基于经验小波变换的变压器振动信号特征提取[J].电力系统自动化,2017,41(20):63-69.
ZHAO Miaoying,XU Gang.Feature extraction of transformer vibration signal based on empirical wavelet transform[J].Automation of Electric Power Systems,2017,41(20):63-69.
曲建岭,余路,袁涛,等.基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J].仪器仪表学报,2018,39(7):134-143.
QU Jianling,YU Lu,YUAN Tao,et al.Adaptive fault diagnosis algorithm for rolling bearing based on one dimensional convolutional neural network[J].Chinese Journal of Scientific Instrument,2018,39(7):134-143.
陈学军,杨永明.基于经验小波变换的振动信号分析[J].太阳能学报,2017,38(2):339-346.
CHEN Xuejun,YANG Yongming.Vibration signal analysis based on empirical wavelet transform[J].Acta Energiae Solaris Sinica,2017,38(2):339-346.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构