1.山西金融职业学院 信息技术系, 山西 太原 030008
2.太原理工大学 机械与运载工程学院, 山西 太原 030024
3.煤矿综采装备山西省重点实验室, 山西 太原 030024
李长文(1979— ),男,山西平定人,讲师;主要研究方向为深度学习算法智能研究。
扫 描 看 全 文
李长文,李鹏,丁华.基于GAF-inceptionResNet的齿轮箱故障诊断[J].机械传动,2022,46(06):134-140.
Li Changwen,Li Peng,Ding Hua.Gearbox Fault Diagnosis based on GAF-inceptionResNet[J].Journal of Mechanical Transmission,2022,46(06):134-140.
李长文,李鹏,丁华.基于GAF-inceptionResNet的齿轮箱故障诊断[J].机械传动,2022,46(06):134-140. DOI: 10.16578/j.issn.1004.2539.2022.06.020.
Li Changwen,Li Peng,Ding Hua.Gearbox Fault Diagnosis based on GAF-inceptionResNet[J].Journal of Mechanical Transmission,2022,46(06):134-140. DOI: 10.16578/j.issn.1004.2539.2022.06.020.
为了提高齿轮箱故障诊断的准确率,准确表达齿轮箱的健康状态,结合深度学习算法,提出了一种用于齿轮故障诊断的GAF-inceptionResNet模型。该模型可以直接将原始一维振动信号经过格拉姆角场变换后形成图像作为模型的输入,通过Stem-block、残差Inception、残差模块和分类层相互连接。残差Inception网络能够拓宽网络深度,提升训练时长及准确率;残差模块利用恒等映射可以大幅度降低模型的训练难度。因此,该模型可有效地挖掘信号特征之间的信息,使模型的特征学习能力增强,从而提高准确率,精准确定故障。实验结果表明,该模型能够达到99.59%的故障诊断精度,有效实现齿轮箱良好的故障识别与分类。
In order to improve the accuracy of gearbox fault diagnosis and accurately express the health status of the gearbox, combined with deep learning algorithms, a GAF-inceptionResNet model for gear fault diagnosis is proposed. The model can directly take the original one-dimensional vibration signal after GAF transformation to form photos as the input of the model. Through the stem-block, residual inception, residual module and classification layer, the residual inception network can broaden the network depth and improve the training time and accuracy, the residual block uses identity mapping to greatly reduce the training difficulty of the model. Therefore, the model can effectively mine the information between the signal features and enhance the feature learning ability of the model, thereby improving accuracy and accurately determine the faults. The test results show that the model can achieve a fault diagnosis accuracy of 99.59%. It can effectively achieve good gearbox fault identification and classification.
齿轮箱故障诊断格拉姆角场振动信号深度残差网络
GearboxFault diagnosisGAFVibration signalDeep residual network
刘艳芳,刘尚旺.MED和分层模糊熵在滚动轴承故障诊断中的应用[J].机械设计与制造,2018(11):49-52.
LIU Yanfang,LIU Shangwang.Application of MED and hierarchical fuzzy entropy to rolling bearing fault diagnosis[J].Machinery Design and Manufacture,2018(11):49-52.
CHEN J L,LI Z P,PAN J,et al.Wavelet transform based on inner product in fault diagnosis of rotating machinery:a review[J].Mechanical Systems and Signal Processing,2016:1-35.
VAN M,KANG H J,SHIN K S.Rolling element bearing fault diagnosis based on non-local means de-noising and empirical mode decomposition[J].IET Science Measurement and Technology,2014,8(6):571-578.
任浩,屈剑锋,柴毅,等.深度学习在故障诊断领域中的研究现状与挑战[J].控制与决策,2017,32(8):1345-1358.
REN Hao,QU Jianfeng,CHAI Yi,et al.Deep learning for fault diagnosis:the state of the art and challenge[J].Control and Decision,2017,32(8):1345-1358.
ZHANG W,PENG G L,LI C H,et al.A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J].Sensors,2017,17(2):425.
李恒,张氢,秦仙蓉,等.基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J].振动与冲击,2018,37(19):124-131.
LI Heng,ZHANG Qing,QIN Xianrong,et al.Fault diagnosis method for rolling bearings based on short-time fourier transform and convolution neural network[J].Journal of Vibration and Shock,2018,37(19):124-131.
HE C,GE D C,YANG M H,et al.A data-driven adaptive fault diagnosis methodology for nuclear power systems based on NSGAII-CNN[J].Annals of Nuclear Energy,2021,159(1):12.
仝钰,庞新宇,魏子涵.基于GADF-CNN的滚动轴承故障诊断方法[J].振动与冲击,2021,40(5):247-253.
TONG Yu,PANG Xinyu,WEI Zihan.Rolling bearing fault diagnosis method based on GADF-CNN[J].Journal of Vibration and Shock,2021,40(5):247-253.
FAN H W,XUE C,ZHANG X H,et al.Vibration images-driven fault diagnosis based on CNN and transfer learning of rolling bearing under strong noise[J].Shock and Vibration,2021(2):1-16.
ZHANG Z,FAN Y.Online modeling method of fault diagnosis based on CNN and OS-ELM[M]//Recent Development in Mechatronics and Intelligent Robotics.Berlin:Springer,2020:495-503.
HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),June 27-30,2016,Las Vegas,NV,USA.New York:IEEE,2016:770-778.
FU S F,CAI F H,WANG W.Fault diagnosis of photovoltaic array based on SE-ResNet[J].Journal of Physics Conference Series,2020,1682(1):012004.
WANG Z G,OATES T.Encoding time series as images for visual inspection and classification using tiled convolutional neural Networks[C].Workshops at the Twenty-ninth AAAI Conference on Artificial Intelligence,2015:40-46.
SZEGEDY C,LOFFE S,VANHOUCKE V,et al.Inception-v4,inception-ResNet and the impact of residual connections on learning[J].31st AAAI Conference on Artificial Intelligence,2016:4278-4284.
VAN DER MAATEN L,HINTON G.Visualizing data using t-SNE[J].Journal of Machine Learning Research,2008(9):2579-2605.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构