1.广西大学 电气工程学院, 广西 南宁 530004
李启(1996— ),男,河北唐山人,硕士研究生;研究方向为扑翼飞行器的设计。
蔡毓(1977— ),男,广西南宁人,博士,硕士生导师;研究方向为仿生扑翼飞行器、智能仿生机器人。
扫 描 看 全 文
李启,蔡毓,黄显升等.基于曲柄滑槽机构的扑翼飞行器设计[J].机械传动,2022,46(06):127-133.
Li Qi,Cai Yu,Huang Xiansheng,et al.Design of Flapping Wing Aircraft based on Crank Chute Mechanism[J].Journal of Mechanical Transmission,2022,46(06):127-133.
李启,蔡毓,黄显升等.基于曲柄滑槽机构的扑翼飞行器设计[J].机械传动,2022,46(06):127-133. DOI: 10.16578/j.issn.1004.2539.2022.06.019.
Li Qi,Cai Yu,Huang Xiansheng,et al.Design of Flapping Wing Aircraft based on Crank Chute Mechanism[J].Journal of Mechanical Transmission,2022,46(06):127-133. DOI: 10.16578/j.issn.1004.2539.2022.06.019.
针对传统扑翼飞行器机翼拍打存在相位差的问题,设计了一种使用曲柄滑槽机构传动的扑翼飞行器,对其进行建模和仿真分析,制作样机并进行了实际飞行测试。制作的样机质量为26 g,翼展为340 mm,最高拍打频率为17 Hz。对曲柄滑槽机构进行理论分析,推导出该机构的运动学方程;利用SolidWorks软件对曲柄滑槽机构进行运动学仿真分析,研究了不同曲柄长度和不同拍打频率下扑翼飞行器的运动特性,确定了一个合适的曲柄长度;测试了不同电机型号和减速比下扑翼飞行器的功率消耗,确定一组低功耗的动力装置。研究结果表明,曲柄滑槽传动机构能够实现机翼无相差对称拍打,降低升力不平衡对机身的影响;在曲柄长度为4.5 mm时,机翼的上冲程角和下冲程角分别为45°和-15°,扑翼飞行器能够实现在空中稳定飞行。
Aiming at the problem of phase lag in flapping wing of traditional flapping wing aircraft,a kind of flapping wing aircraft driven by crank chute mechanism is designed,its modeling and simulation analysis are carried out,the prototype is made and the actual flight test is carried out. The mass of the prototype is 26 g,the wingspan is 340 mm,and the maximum beating frequency is 17 Hz. The crank chute mechanism is analyzed theoretically,and the kinematic equation of the mechanism is deduced; the kinematic simulation analysis of crank chute mechanism is carried out by using the SolidWorks software. The motion characteristics of flapping wing aircraft under different crank length and different flapping frequency are studied,and a suitable crank length is determined; the power consumption of flapping wing aircraft with different motor types and reduction ratios is tested,and a set of low-power power devices is determined. The results show that the crank chute mechanism can eliminate the phase lag between the wings and reduce the influence of lift imbalance on the fuselage; when the crank length is 4.5 mm,the up stroke angle and down stroke angle of the wing are 45° and -15°; the flapping wing aircraft can achieve stable flight in the air.
扑翼飞行器曲柄滑槽机构相位差运动仿真
Flapping wing aircraftCrank chute mechanismPhase lagMotion simulation
吴江浩,周超.仿生微型飞行器悬停飞行的空气动力学研究[J].空气动力学学报,2018,36(1):64-79.
WU Jianghao,ZHOU Chao.Review on aerodynamics of bionic micro air vehicle in hovering flight[J].Acta Aerodynamica Sinica,2018,36(1):64-79.
徐佳,张卫平,牟家旺,等.仿蜂鸟微飞行器扑翼机构运动学、升力及Clap-fling机制研究[J].机械设计与研究,2020,36(4):28-32.
XU Jia,ZHANG Weiping,MU Jiawang,et al.Research on kinematics,lift and Clap-fling mechanism of flapping mechanism of hummingbird-like micro air vehicle[J].Mechanical Design and Research,2020,36(4):28-32.
李航.一类仿昆虫微型扑翼飞行器设计研究[J].飞行力学,2018,36(6):28-33.
LI Hang.Research on the design of an insect-sized micro-flapping wing aircraft[J].Flight Dynamics,2018,36(6):28-33.
CROON C H D G,De CLERCQ M E D K,RUIJSINK R,et al.Design,aerodynamics,and vision-based control of the DelFly[J].International Journal of Micro Air Vehicles,2009,1(2):71-97.
张钰,刘志伟.基于电磁驱动的微扑翼飞行器驱动器振动特性[J].传感器与微系统,2019,38(3):11-13.
ZHANG Yu,LIU Zhiwei.Vibration characteristics of micro flapping-wing aircraft actuator based on electromagnetic drive[J].Transducer and Microsystem Technology,2019,38(3):11-13.
田卫军,张亚锋,李郁.压电致动器扑翼结构动力学仿真[J].航空制造技术,2017(14):68-71.
TIAN Weijun,ZHANG Yafeng,LI Yu.Dynamic simulation analysis of piezoelectrically driven flapping wing[J].Aeronautical Manufacturing Technology,2017(14):68-71.
徐兵.基于人工肌肉的微扑翼驱动技术研究[D].厦门:厦门大学,2014:53-56.
XU Bing.Research on micro flapping wing driving technology based on artificial muscle[D].Xiamen:Xiamen University,2014:53-56.
张弘志,宋笔锋,孙中超,等.扑翼飞行器驱动机构回顾与展望[J].航空学报,2021,42(2):80-101.
ZHANG Hongzhi,SONG Bifeng,SUN Zhongchao,et al.Driving mechanism of flapping wing:Review and prospect[J].Acta Aeronautica Et Astronautica Sinica,2021,42(2):80-101.
杨永刚,苏汉平.扑翼飞行器驱动机构的优化设计与仿真[J].机械传动,2017,41(1):122-126.
YANG Yonggang,SU Hanping.Optimization design and simulation for driving mechanism of flapping-wing air vehicle[J].Journal of Mechanical Transmission,2017,41(1):122-126.
ZHANG Y F,SONG B F,ZHANG X W,et al.Development of flapping wing micro air vehicle[C].Proceedings of the 26th International Congress of the Aeronautical Sciences,2012:3939-3942.
YANG L J,HSU C K,HSIAO F Y,et al.A micro-aerial-vehicle(MAV)with figure-of-eight flapping induced by flexible wing frames[C]//Proceedings of the 47th AIAA Aerospace Sciences Meeting,January 5-8,2009,Orlando,Florida,USA.Reston:AIAA,2009:092407.
YANG L J,ESAKKI B,CHANDRASEKHAR U,et al.Practical flapping mechanisms for 20 cm-span micro air vehicles[J].International Journal of Micro Air Vehicles,2015,7(2):181-202.
郭建伟,周洋,贺业荣.全转动副空间扑翼机构设计[J].机械传动,2014,38(5):74-76.
GUO Jianwei,ZHOU Yang,HE Yerong.Design of pure revolute-joint spatial flapping mechanism[J].Journal of Mechanical Transmission,2014,38(5):74-76.
周凯,方宗德,曹雪梅,等.单曲柄双摇杆扑翼驱动机构的优化设计[J].航空动力学报,2008,23(1):184-188.
ZHOU Kai,FANG Zongde,CAO Xuemei,et al.Optimization design of singer-crank and double-rocker kind of driving mechanism for FMAV[J].Journal of Aerospace Power,2008,23(1):184-188.
董二宝,许旻,李永新,等.单曲柄双摇杆机构同步性能优化[J].机械工程学报,2010,46(7):22-26.
DONG Erbao,XU Min,LI Yongxin,et al.Synchronization optimum design of single-crank and double-rockers mechanism[J].Journal of Mechanical Engineering,2010,46(7):22-26.
张威,胡超,赵新华,等.两侧不对称单曲柄-双摇杆机构的同步性研究[J].机械设计,2018,35(5):60-64.
ZHANG Wei,HU Chao,ZHAO Xinhua,et al.Research on synchronization of bilateral asymmetric single crank double rocker mechanism[J].Journal of Mechanical Design,2018,35(5):60-64.
徐兵,朱伟平,陈强,等.一种曲柄滑块式扑翼飞行器:205707352U[P].2016-11-23.
XU Bing,ZHU Weiping,CHEN Qiang,et al.A crank-slider flap-ping-wing aircraft:205707352U[P].2016-11-23.
吉爱红,沈欢.双曲柄摇杆无相差双对翼扑翼飞行器及其工作方法:108248856A[P].2018-07-06.
JI Aihong,SHEN Huan.Double-crank rocker without phasedifference double-wing flapping-wing aircraft and its work-ing method:108248856A[P].2018-07-06.
ROSHANBIN A,ALTARTOURI H,KARASEK M,et al.Colibri:a hovering flapping twin-wing robot[J].International Journal of Micro Air Vehicles,2017,9(4):270-282.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构