1.西南交通大学 机械工程学院, 四川 成都 610031
冉小平(1996— ),男,重庆忠县人,在读硕士研究生;主要研究方向为斜齿锥齿轮拓扑修形与有限元分析。
谷丽瑶(1983— ),男,辽宁沈阳人,副教授、硕士生导师;研究方向为高速切削理论与应用、高性能锥齿轮设计与制造。
扫 描 看 全 文
冉小平,谷丽瑶,王健帆.等变位斜齿锥齿轮动态啮合特性有限元分析[J].机械传动,2022,46(06):31-37.
Ran Xiaoping,Gu Liyao,Wang Jianfan.Finite Element Analysis of Dynamic Meshing Characteristic of Skew Bevel Gear with Equivocal Modification[J].Journal of Mechanical Transmission,2022,46(06):31-37.
冉小平,谷丽瑶,王健帆.等变位斜齿锥齿轮动态啮合特性有限元分析[J].机械传动,2022,46(06):31-37. DOI: 10.16578/j.issn.1004.2539.2022.06.005.
Ran Xiaoping,Gu Liyao,Wang Jianfan.Finite Element Analysis of Dynamic Meshing Characteristic of Skew Bevel Gear with Equivocal Modification[J].Journal of Mechanical Transmission,2022,46(06):31-37. DOI: 10.16578/j.issn.1004.2539.2022.06.005.
基于空间展成法加工原理,推导了等变位斜齿锥齿轮的齿面数学模型和齿面接触线方程,建立了7齿对齿面接触的有限元动态分析模型,获得了啮合周期内边缘接触的位置、不同负载下齿面接触应力和齿根弯曲应力的变化曲线,分析了斜齿锥齿轮稳定啮合时法向接触力的变化规律和轮对重合度。结果表明,斜齿锥齿轮齿对在进入和退出啮合时均发生了边缘接触,整个啮合过程的接触力曲线较为平滑,在3齿啮合区附近呈近对称分布且具有较高的重合度,最大弯曲应力出现在大轮大端和小轮小端的齿根过渡圆角附近。
On the basis of the principal of gear generating machining method,the gear flank mathematical model and gear tooth flank contact line equation of skew bevel gears with equivocal modification are derived,the contact finite element dynamic analysis model with seven teeth is built,the position of edge contact in a meshing period,as well as the variation curves of contact stress and bending stress under different loads are obtained. The variation rule of normal contact force and the contact ratio of skew bevel gears in stable meshing period are analyzed. The result shows that edge contact occurs when skew bevel gears enter and exit meshing process. The contact force curve in the entire meshing period is smooth,which is symmetrically distributed near the three-tooth meshing period and has a high contact ratio. The maximum bending stress occurs near the tooth root transition fillet of the large end of the driven gear and the small end of driving pinion.
斜齿锥齿轮等变位边缘接触接触力有限元分析
Skew bevel gearEquivocal modificationTooth edge contactContact forceFinite element analysis
呼咏,豆书强,董占云,等.斜齿锥齿轮的精确建模与加工仿真[J].沈阳工业大学学报,2013,35(6):652-656.
HU Yong,DOU Shuqiang,DONG Zhanyun,et al.Precise modeling and machining simulation of skew bevel gear[J].Journal of Shenyang University of Technology,2013,35(6):652-656.
谷丽瑶,黄恺.共轭啮合原理实现斜齿圆锥齿轮的三维实体造型[J].辽宁工业大学学报(自然科学版),2008(4):246-249.
GU Liyao,HUANG Kai.3D-Solid modeling of skew bevel gear under conjugate mashing principle[J].Journal of Liaoning University of Technology(Natural Science Edition),2008(4):246-249.
AL-DACCAK M J,ANGELES J,GONZALEZ-PALACIOS M A.The modeling of bevel gears using the exact spherical involute[J].Journal of Mechanical Design,1994,116(2):364-368.
王中荣,王三民,牛治永.直齿锥齿轮接触应力分布规律研究[J].机械设计与制造,2009(10):118-120.
WANG Zhongrong,WANG Sanmin,NIU Zhiyong.Study of contact stress distribution of bevel gear[J].Machinery Design & Manufacture,2009(10):118-120.
周延泽,吴继泽.直齿锥齿轮齿根应力的有限元分析[J].北京航空航天大学学报,1996(1):88-93.
ZHOU Yanze,WU Jize.Finite element analysis of tooth root stress of straight bevel gear[J].Journal of Beijing University of Aeronautics and Astronautics,1996(1):88-93.
LITVIN F L,FUENTES A,HAYASAKA K.Design,manufacture,stress analysis,and experimental tests of low-noise high endurance spiral bevel gears[J].Mechanism and Machine Theory,2006,41(1):83-118.
邓拥军,周向.弧齿锥齿轮加载啮合特性有限元分析[J].机械传动,2017,41(12):97-101.
DENG Yongjun,ZHOU Xiang.Finite element analysis of loaded meshing characteristic of spiral bevel gear[J].Journal of Mechanical Transmission,2017,41(12):97-101.
侯祥颖,方宗德.考虑边缘接触的弧齿锥齿轮有限元接触分析[J].西安交通大学学报,2016,50(11):69-74.
HOU Xiangying,FANG Zongde.Tooth contact analysis of spiral bevel tooth contact analysis of spiral bevel gears considering edge contact with finite element method[J].Journal of Xi'an Jiaotong University,2016,50(11):69-74.
董学朱.齿轮啮合理论基础[M].北京:机械工业出版社,1989:35-36.
DONG Xuezhu.Basic theory of gear meshing[M].Beijing:Chinese Machine Press,1989:35-36.
刘耀东,陈凯,华晓波,等.考虑弹流润滑作用的斜齿轮啮合分析方法研究[J].计算力学学报,2015,32(6):838-844.
LIU Yaodong,CHEN Kai,HUA Xiaobo,et al.Research on mesh analysis method of helical gear with EHL[J].Chinese Journal of Computational Mechanics,2015,32(6):838-844.
李海涛,魏文军.基于Matlab的斜齿锥齿轮副齿面接触的计算机模拟[J].中国农业大学学报,2005(5):79-81.
LI Haitao,WEI Wenjun.Computer simulation for skew bevel gears contact analysis based on Matlab[J].Journal of China Agricultural University,2005(5):79-81.
JOHNSON K L.Contact mechanics[M].New York:Cambridge University Press,1987:427.
徐恺,苏建新,周永丹,等.齿轮线接触与点接触理论与有限元分析[J].机械传动,2014,38(8):77-81.
XU Kai,SU Jianxin,ZHOU Yongdan,et al.Theoretical formula and finite element analysis between gear pairs with line contact and point contact[J].Journal of Mechanical Transmission,2014,38(8):77-81.
唐进元,刘艳平.直齿面齿轮加载啮合有限元仿真分析[J].机械工程学报,2012,48(5):124-131.
TANG Jinyuan,LIU Yanping.Loaded meshing simulation of face-gear drive with spur involute pinion based on finite element analysis[J].Journal of Mechanical Engineering,2012,48(5):124-131.
秦德润,杨龙,唐进元,等.非正交斜齿面齿轮弯曲强度计算方法研究[J].机械传动,2020,44(1):1-6.
QIN Derun,YANG Long,TANG Jinyuan,et al.Research of the calculation method of bending strength of nonorthogonal helical face gear[J].Journal of Mechanical Transmission,2020,44(1):1-6.
邓效忠,范明,杨宏斌.螺旋锥齿轮的重合度与承载量的关系[J].中国机械工程,2001,12(8):878-880.
DENG Xiaozhong,FAN Ming,YANG Hongbin.Relationship retween contact ratio and load of spiral bevel gears[J].China Mechanical Engineering,2001,12(8):878-880.
唐进元,蒲太平.基于有限元法的螺旋锥齿轮啮合刚度计算[J].机械工程学报,2011,47(11):23-29.
TANG Jinyuan,PU Taiping.Spiral bevel gear meshing stiffness calculations based on the finite element method[J].Journal of Mechanical Engineering,2011,47(11):23-29.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构