1.南昌航空大学 飞行器工程学院, 江西 南昌 330063
2.南昌航空大学 通航学院, 江西 南昌 330063
3.故障诊断与健康管理技术航空科技重点实验室, 上海 201601
揭震国(1996— ),男,江西宁都人,硕士研究生;研究方向为故障诊断。
王细洋(1967— ),男,江西湖口人,博士,教授,硕士生导师;研究方向为故障诊断,先进制造。
扫 描 看 全 文
揭震国,王细洋,龚廷恺.基于分布适配层和软标签学习的齿轮故障诊断[J].机械传动,2022,46(05):160-166.
Jie Zhenguo,Wang Xiyang,Gong Tingkai.Gear Fault Diagnosis based on Distribution Adaptation Layer and Soft Label Learning[J].Journal of Mechanical Transmission,2022,46(05):160-166.
揭震国,王细洋,龚廷恺.基于分布适配层和软标签学习的齿轮故障诊断[J].机械传动,2022,46(05):160-166. DOI: 10.16578/j.issn.1004.2539.2022.05.024.
Jie Zhenguo,Wang Xiyang,Gong Tingkai.Gear Fault Diagnosis based on Distribution Adaptation Layer and Soft Label Learning[J].Journal of Mechanical Transmission,2022,46(05):160-166. DOI: 10.16578/j.issn.1004.2539.2022.05.024.
基于卷积神经网络的齿轮智能识别算法能有效地识别齿轮故障,但卷积神经网络需要大量的已标注训练数据,制约了卷积神经网络在齿轮故障诊断上的应用。针对该问题,提出了基于分布适配层和软标签学习的齿轮故障诊断方法。采用卷积神经网络提取特征和软标签;通过分布适配层提取分布差异,软标签学习生成软标签损失;以分布差异、软标签损失与分类损失生成的联合损失为目标函数,训练模型并进行目标域故障诊断。采用齿轮振动信号验证了提出方法,结果表明,提出方法能准确有效地分类齿轮故障数据。
The intelligent gear recognition method based on convolutional neural network can effectively identify the gear fault, but the convolutional neural network needs a lot of labeled training data, which limits the application of convolutional neural network in gear fault diagnosis. To solve this problem, a gear fault diagnosis method based on distribution adaptation layer and soft label learning is proposed. The convolutional neural network is used to extract features and soft labels. The distribution discrepancy is extracted by the distribution adaptation layer, and the soft label loss is generated by the soft label learning. The joint loss of distribution discrepancy, soft label loss and classification loss are used as the objective function, and the model is trained to diagnose the faults of target domain. The proposed method is verified by gear vibration signals. The results show that the proposed method can classify gear fault data accurately and effectively.
齿轮故障诊断卷积神经网络深度迁移学习分布适配层软标签学习
Gear fault diagnosisConvolutional neural networkDeep transfer learningDistribution adaptation layerSoft label learning
雷亚国,贾峰,孔德同,等.大数据下机械智能故障诊断的机遇与挑战[J].机械工程学报,2018,54(5):94-104.
LEI Yaguo,JIA Feng,KONG Detong,et al.Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J].Journal of Mechanical Engineering,2018,54(5):94-104.
CHEN Z Q,LI C,SANCHEZ R V,et al.Gearbox fault identification and classification with convolutional neural networks[J].Shock and Vibration,2015(5):1-10.
薛璇怡,庞新宇.基于1-DCNN的行星齿轮箱故障诊断[J].机械传动,2020,44(11):127-133.
XUE Xuanyi,PANG Xinyu.Fault diagnosis of planetary gearbox based on 1-DCNN[J].Journal of Mechanical Transmission,2020,44(11):127-133.
LU W N,LIANG B,CHEN Y,et al.Deep model based domain adaptation for fault diagnosis[J].IEEE Transactions on Industrial Electronics,2017,64(3):2296-2305.
雷亚国,杨彬,杜兆钧,等.大数据下机械装备故障的深度迁移诊断方法[J].机械工程学报,2019,55(7):1-8.
LEI Yaguo,YANG Bin,DU Zhaojun,et al.Deep transfer diagnosis method for machinery in big data era[J].Journal of Mechanical Engineering,2019,55(7):1-8.
LI X,ZHANG W,DING Q,et al.Multi-layer domain adaptation method for rolling bearing fault diagnosis[J].Signal Processing,2019,157:180-197.
LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the Association for Computing Machinery,2017,60(6):84-90.
SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition,June 7-12,2015,Boston.New York:IEEE,2015:1-9.
HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition,June 27-30,2016,Las Vegas,NV.New York:IEEE,2016:770-778.
TAN C Q,SUN F C,KONG T,et al.A survey on deep transfer learning[C]//Proceedings of the International Conference on Artificial Neural Networks,September 27,2018,Rhodes,Greece.Berlin:Springer,2018:270-279.
GHIFARY M,KLEIJN W B,ZHANG M.Domain adaptive neural networks for object recognition[C]//Proceedings of the Pacific Rim International Conference on Artificial Intelligence,September 21,2014,Gold Coast,Australia.Berlin:Springer,2014:898-904.
BORGWARDT K M,GRETTON A,RASCH M J,et al.Integrating structured biological data by kernel maximum mean discrepancy[J].Bioinformatics,2006,22(14):49-57.
TZENG E,HOFFMAN J,DARRELL T,et al.Simultaneous deep transfer across domains and tasks[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision,December 7-13,2015,Santiago,Chile.New York:IEEE,2015:4068-4076.
MAATEN L,HINTON G.Visualizing data using t-SNE[J].Journal of Machine Learning Research,2008,9(11):2579-2605.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构