1.南京理工大学 机械工程学院, 江苏 南京 210094
2.南京南传智能技术有限公司, 江苏 南京 210000
孙厚振(1997— ),男,江苏徐州人,硕士;研究方向为工业工程。
扫 描 看 全 文
孙厚振,袁红兵,余斌.基于SSA-BP的RV减速器传动误差预测[J].机械传动,2022,46(05):149-154.
Sun Houzhen,Yuan Hongbing,Yu Bin.Transmission Error Prediction of RV Reducer based on SSA-BP[J].Journal of Mechanical Transmission,2022,46(05):149-154.
孙厚振,袁红兵,余斌.基于SSA-BP的RV减速器传动误差预测[J].机械传动,2022,46(05):149-154. DOI: 10.16578/j.issn.1004.2539.2022.05.022.
Sun Houzhen,Yuan Hongbing,Yu Bin.Transmission Error Prediction of RV Reducer based on SSA-BP[J].Journal of Mechanical Transmission,2022,46(05):149-154. DOI: 10.16578/j.issn.1004.2539.2022.05.022.
RV(Rotate Vector)减速器装配质量的影响因素众多,装配质量不稳定。针对此情况,建立了基于麻雀搜索算法(Sparrow search algorithm,SSA)优化的BP神经网络质量预测模型,以减速器的关键性能指标——传动误差作为输出指标,选取减速器零部件的关键尺寸参数作为影响因素输入,经过数据预处理后建立质量预测模型进行误差预测。结果表明,经过麻雀搜索算法改进后的BP神经网络预测模型具有良好的预测精度,为RV减速器装配环节的零件选配工作提供了帮助。
There are many factors affecting the assembly quality of RV (Rotate Vector) reducer, and the assembly quality is unstable. In response to this situation, an optimized BP neural network quality prediction model based on the Sparrow Search Algorithm (SSA) is established. The transmission error of the key performance index of the reducer is used as the output index, and the key size parameters of the assembly parts are selected as the input influencing factors. After data preprocessing, use the quality prediction model to make predictions. The results show that the BP neural network prediction model improved by the Sparrow algorithm has good prediction accuracy, can effectively predict the selected index parameters, and provides help for the selection of parts in the assembly link of the RV reducer.
RV减速器质量预测BP神经网络麻雀搜索算法
RV reducerQuality predictionBP neural networkSparrow search algorithm
张金.RV减速器传动精度的研究[D].哈尔滨:哈尔滨理工大学,2013:2-3.
ZHANG Jin.Research of transmission precision for RV reducer[D].Harbin:Harbin University of Science and Technology,2013:2-3.
佚名.中国工业机器人产业发展与应用观察[J].企业管理,2021(4):19-23.
Anonymity.China industrial robot industry development and application observation[J].Enterprise Management,2021(4):19-23.
刘明周,吕旭泽,王小巧.发动机曲轴多工序装配的质量预测模型研究[J].汽车工程学报,2016,6(1):22-28.
LIU Mingzhou,LÜ Xuze,WANG Xiaoqiao.Research on quality prediction model of the engine crankshaft multistep assembly[J].Chinese Journal of Automotive Engineering,2016,6(1):22-28.
万方华,王晓琪,张洪,等.基于KPLS的滚动轴承装配质量预测[J].工业工程,2016,19(4):136-139.
WAN Fanghua,WANG Xiaoqi,ZHANG Hong,et al.Rolling bearing assembly quality forecasting based on kernel partial least squares[J].Industrial Engineering,2016,19(4):136-139.
彭彬彬,闫献国,杜娟.基于BP和RBF神经网络的表面质量预测研究[J].表面技术,2020,49(10):324-328.
PENG Binbin,YAN Xianguo,DU Juan.Surface quality prediction based on BP and RBF neural networks[J].Surface Technology,2020,49(10):324-328.
魏新尧,佘世刚,容伟,等.基于布谷鸟算法优化BP神经网络的锂电池健康状态预测[J].计算机测量与控制,2021,29(4):65-69.
WEI Xinyao,SHE Shigang,RONG Wei,et al.Estimation of SOH for battery based on cuckoo search algorithm optimized BP neural network[J].Computer Measurement and Control,2021,29(4):65-69.
马创涛,邵景峰.烟花算法改进BP神经网络预测模型及其应用[J].控制工程,2020,27(8):1324-1331.
MA Chuangtao,SHAO Jingfeng. Prediction model based on improved BP neural network with fireworks algorithm and its application[J].Control Engineering of China,2020,27(8):1324-1331.
程月,李世龙,齐白羽.国产RV减速机的发展[J].中国新技术新产品,2019(12):51-52.
CHENG Yue,LI Shilong,QI Baiyu.Development of domestic RV reducer[J].New Technology & New Products of China,2019(12):51-52.
汪训浪,范元勋.齿轮传动误差主要影响因素分析与计算[J].组合机床与自动化加工技术,2018(2):43-45.
WANG Xunlang,FAN Yuanxun.Analysis of main influencing factors and calculation on gear transmission error[J].Modular Machine Tool & Automatic Manufacturing Technique,2018(2):43-45.
陈振宇,沈兆光,杨玉虎.摆线针轮行星传动机构啮合特性分析[J].机械设计,2015,32(10):9-14.
CHEN Zhenyu,SHEN Zhaoguang,YANG Yuhu.Meshing characteristic analysis of cycloid pin gear planetary transmission mechanism[J].Journal of Machine Design,2015,32(10):9-14.
刘天舒.BP神经网络的改进研究及应用[D].哈尔滨:东北农业大学,2011:12-13.
LIU Tianshu.The research and application on BP neural network improvement[D].Harbin:Northeast Agricultural University,2011:12-13.
YU W B,ZHAO F Y.Prediction of critical properties of biodiesel fuels from FAMEs compositions using intelligent genetic algorithm-based back propagation neural network[J].Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2021,43(17):2063-2076.
许国根,贾瑛,黄智勇,等.预测理论与方法及其MATLAB实现[M].北京:北京航空航天大学出版社,2020:218.
XU Guogen,JIA Ying,HUANG Zhiyong,et al.Prediction theory and method and its MATLAB implementation[M].Beijing:Beijing Aerospace University Press,2020:218.
薛建凯.一种新型的群智能优化技术的研究与应用[D].上海:东华大学,2020:15-17.
XUE Jiankai.Research and application of a novel swarm intelligence optimization technique:sqarrow search algorithm[D].Shanghai:Donghua University,2020:15-17.
吕鑫,慕晓冬,张钧,等.混沌麻雀搜索优化算法[J/OL].北京航空航天大学学报:1-10[2021-05-13].https://doi.org/10.13700/j.bh.1001-5965.2020.0298https://doi.org/10.13700/j.bh.1001-5965.2020.0298.
LÜ Xin,MU Xiaodong,ZHANG Jun,et al.Chaos sparrow search optimization algorithm[J/OL].Journal of Beijing University of Aeronautics and Astronautics:1-10[2021-5-13].https://doi.org/10.13700/j.bh.1001-5965.2020.0298https://doi.org/10.13700/j.bh.1001-5965.2020.0298.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构