1.重庆交通大学 机电与车辆工程学院, 重庆 400074
2.重庆交通大学 航空学院, 重庆 400074
3.重庆交通大学 绿色航空技术研究院, 重庆 400074
苟武尧(1997— ),男,重庆人,硕士;研究方向为无级变速器Simulink仿真。
扫 描 看 全 文
苟武尧,邓涛,柳平等.新型液电混动多功能无级变速器设计建模仿真[J].机械传动,2022,46(05):68-75.
Gou Wuyao,Deng Tao,Liu Ping,et al.Design and Modeling Simulation of a New Hydro-electric Hybrid Multi-function Continuously Variable Transmission[J].Journal of Mechanical Transmission,2022,46(05):68-75.
苟武尧,邓涛,柳平等.新型液电混动多功能无级变速器设计建模仿真[J].机械传动,2022,46(05):68-75. DOI: 10.16578/j.issn.1004.2539.2022.05.010.
Gou Wuyao,Deng Tao,Liu Ping,et al.Design and Modeling Simulation of a New Hydro-electric Hybrid Multi-function Continuously Variable Transmission[J].Journal of Mechanical Transmission,2022,46(05):68-75. DOI: 10.16578/j.issn.1004.2539.2022.05.010.
传统无级变速器主要有液压、机械、电力3种传动方式,单一传动方式劣势明显,复合式无级变速器应用领域仍然较为局限。设计了一款新型液电混动多功能无级变速器,融合液压传动与电力传动的驱动与制动能量再生功能,实现机械能、液压能、电能融合工作,提升了系统的性能与能效水平。通过结构分析与设计,制定其工作模式,建立SolidWorks、Matlab/Simulink与Advisor的联合仿真模型,在UDDS循环工况下进行了仿真验证。结果表明,该变速器结构可实现设计的无级变速功能,而所搭载的整车以多消耗约10% SOC为代价,其动力性、燃油经济性与排放指标分别提升了19.8%、36.4%与41.9%,验证了无级变速器设计的合理性与有效性。
The traditional continuously variable transmission (CVT) is mainly divided into three transmission modes: hydraulic, mechanical and electric. The single transmission mode has obvious disadvantages, and the application field of composite CVT is still limited. Thus, a new hydro-electric hybrid multi-functional CVT is designed, which integrates the driving and braking energy regeneration functions of hydraulic and electric transmission, realizes the integration of mechanical energy, hydraulic energy and electric energy, and improves the performance and energy efficiency of the system. Through structural analysis and design, its working mode is formulated, and the joint simulation model of Solidworks, Matlab/Simulink and advisor is established for simulation verification under UDDS cycle. The simulation results show that the transmission structure can realize the designed continuously variable function, and the power performance, fuel economy and emission indexes of the whole vehicle are increased by 19.8%, 36.4% and 41.9% respectively at the cost of consuming about 10% SOC, which verifies the rationality and effectiveness of the CVT design.
无级变速器液电混动双转子设计联合仿真
Continuously variable transmissionHydro-electric hybridDouble-rotor designAssociated simulation
林超,魏艳群,赵相路,等.新型双作用柱塞泵的设计与特性分析[J].西南交通大学学报,2018,53(3):602-609.
LIN Chao,WEI Yanqun,ZHAO Xianglu,et al.Design and analysis of new type of piston pump[J].Journal of Southwest Jiaotong University,2018,53(3):602-609.
张文升,王军利,任志贵,等.基于AMESim的高速液压柱塞泵设计与试验研究[J].煤矿机械,2019,40(7):55-57.
ZHANG Wensheng,WANG Junli,REN Zhigui,et al.Design and experimental study of high speed hydraulic piston pump based on AMESim[J].Coal Mine Machinery,2019,40(7):55-57.
方继根,吴进军,于革刚,等.动外壳式海水径向柱塞泵设计及力学特性分析[J].液压与气动,2016(11):24-30.
FANG Jigen,WU Jinjun,YU Gegang,et al.Study on the design and mechanical property of a radial piston pump with a revolving outer ring[J].Chinese Hydraulics & Pneumatics,2016(11):24-30.
虞儒敏,邢彤,阮健.二维(2D)活塞泵的设计与静力学仿真研究[J].液压气动与密封,2019,39(2):27-31.
YU Rumin,XING Tong,RUAN Jian.Design and statics simulation study of two-dimensional(2D)piston pump[J].Hydraulics Pneumatics & Seals,2019,39(2):27-31.
李会妨,权龙,郝云晓,等.电比例斜盘式恒压柱塞泵的联合仿真与特性研究[J].液压与气动,2019(9):1-7.
LI Huishe,QUAN Long,HAO Yunxiao,et al.Co-simulation and characteristic research of electric proportional swash plate constant pressure piston pump[J].Chinese Hydraulics & Pneumatics,2019(9):1-7.
薛志飞.基于Simscape的液压机械无级传动的建模与仿真[J].拖拉机与农用运输车,2017,44(2):12-16.
XUE Zhifei.Modeling and simulation of hydro-mechanical stepless transmission based on Simscape[J].Tractor & Agricultural Transporter,2017,44(2):12-16.
赵新泽,曹正,劳海军.基于Simulink的新型电液比例排量柱塞泵仿真分析[J].机床与液压,2010,38(11):96-98.
ZHAO Xinze,CAO Zheng,LAO Haijun.Simulation analysis of new electro-hydraulic proportional displacement piston pump based on Simulink[J].Machine Tool & Hydraulics,2010,38(11):96-98.
杨秀花,张力.基于MATLAB/Simulink的无级变速器控制策略的建模与仿真[D].重庆:重庆大学,2011:44-48.
YANG Xiuhua,ZHANG Li.Modeling and simulation of control strategy for CVT based on MATLAB/Simulink[D].Chongqing:Chongqing University,2011:44-48.
QIN Z,WANG K,LI Y,et al.Simulation and research of one-way valve piston pump based on AMESim[J].Journal of Physics Conference Series,2020,1601:101-106.
罗威,邹大鹏,肖体兵,等.基于AMESim的恒压变量柱塞泵的建模与仿真分析[J].机床与液压,2017,45(5):100-103.
LUO Wei,ZOU Dapeng,XIAO Tibing,et al.Modeling and simulation analysis of constant pressure variable piston pump based on AMESim[J].Machine Tool & Hydraulics,2017,45(5):100-103.
MURGOVSKI N,JOHANNESSON L M,EGARDT B.Optimal battery dimensioning and control of a CVT PHEV powertrain[J].IEEE Transactions on Vehicular Technology,2014,63(5):2151-2161.
任晶鼎,张宏鹏,王慧慧.基于ADVISOR的电动汽车性能仿真[J].汽车实用技术,2018(12):63-64.
REN Jingding,ZHANG Hongpeng,WANG Huihui.Performance simulation of electric vehicle based on ADVISOR[J].Automobile Practical Technology,2018(12):63-64.
陈建兵,向青青.分布式驱动电动汽车Simulink/Carsim联合仿真平台的建立[J].机械科学与技术,2018,37(10):1496-1500.
CHEN Jianbing,XIANG Qingqing.Establishment of Simulink/Carsim co-simulation platform for distributed drive electric vehicle[J].Mechanical Science and Technology for Aerospace Engineering,2018,37(10):1496-1500.
沈兴全.液压传动与控制[M].北京:国防工业出版社,2005:78-79.
SHEN Xingquan.Hydraulic Transmission and Control[M].Beijing:National Defense Industry Press,2005:78-79.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构