1.武汉大学 动力与机械学院, 湖北 武汉 430072
2.国能云南新能源有限公司, 云南 昆明 650214
郑攀(1996— ),男,湖北黄冈人,硕士研究生;研究方向为旋转机械振动特征提取与故障诊断。
巫世晶(1963— ),男,江西寻乌人,教授,博士生导师;从事智能工程机器人、特种电力装备、能源装备、高铁特殊装备、电力特种机器人等领域的设计、制造、控制等前沿领域的相关研究。
扫 描 看 全 文
郑攀,周建华,高素杰等.基于SPS与CNN的行星齿轮箱故障特征提取与诊断研究[J].机械传动,2022,46(04):73-79.
Zheng Pan,Zhou Jianhua,Gao Sujie,et al.Research of Fault Feature Extraction and Diagnosis of Planetary Gear Train based on SPS and CNN[J].Journal of Mechanical Transmission,2022,46(04):73-79.
郑攀,周建华,高素杰等.基于SPS与CNN的行星齿轮箱故障特征提取与诊断研究[J].机械传动,2022,46(04):73-79. DOI: 10.16578/j.issn.1004.2539.2022.04.011.
Zheng Pan,Zhou Jianhua,Gao Sujie,et al.Research of Fault Feature Extraction and Diagnosis of Planetary Gear Train based on SPS and CNN[J].Journal of Mechanical Transmission,2022,46(04):73-79. DOI: 10.16578/j.issn.1004.2539.2022.04.011.
针对行星齿轮箱结构和运行工况复杂,导致信号故障特征提取困难的问题,通过分析行星轮系振动机理,初步推导出含故障齿轮箱振动信号频谱特征;运用谐波乘积谱(Harmonic product spectrum,HPS)与边带乘积谱(Sideband product spectrum,SPS)的方法,在噪声干扰以及故障冲击不明显的条件下,准确提取到了仿真信号的故障特征频率。进一步采集不同运行工况、不同故障状态下的行星齿轮箱振动信号,将提取后的故障特征输入到卷积神经网络中进行故障识别,成功获取到齿轮箱的故障信息,证明了该方法在行星齿轮箱故障诊断方面的可行性。
In order to solve the problem that the complex structure and operating conditions of planetary gear box lead to the difficulty of signal fault feature extraction, the frequency spectrum feature of gearbox vibration signal with faults is preliminarily deduced by analyzing the vibration mechanism of planetary gear train. The method of harmonic product spectrum (HPS) and sideband product spectrum (SPS) is used to accurately extract the fault characteristic frequencies of the simulation signals under the condition that the noise interference and fault impact are not obvious. The vibration signals of the planetary gearbox under different operating conditions and different fault states are further collected,and the extracted fault features are input into the convolutional neural network for fault identification. The fault information of the gearbox is obtained successfully,which proves the feasibility of the proposed method in fault diagnosis of the planetary gearbox.
行星轮系故障特征提取谐波乘积谱边频乘积谱卷积神经网络
Planetary gear trainFault feature extractionHarmonic product spectrumSideband product spectrumConvolutional neural network
张安安,黄晋英,卫洁洁,等.基于EMD-SVD与PNN的行星齿轮箱故障诊断研究[J].机械传动,2018,42(12):160-165.
ZHANG An'an,HUANG Jinying,WEI Jiejie,et al.Research on fault diagnosis of planetary gearbox based on EMD-SVD and PNN[J].Journal of Mechanical Transmission,2018,42(12):160-165.
丁显,徐进,滕伟,等.基于无参数经验小波变换的风电齿轮箱故障特征提取[J].振动与冲击,2020,39(8):99-105.
DING Xian,XU Jin,TENG Wei,et al.Fault feature extraction for a wind turbine gearbox using parameterless empirical wavelet transform[J].Journal of Vibration and Shock,2020,39(8):99-105.
杨国安,钟秉林,黄仁,等.机械故障信号小波包分解的时域特征提取方法研究[J].振动与冲击,2001,20(2):25-28.
YANG Guoan,ZHONG Binglin,HUANG Ren,et al.Research on the extraction method of time-domain sympytoms based on for wavelet packet decomposition of mechanical fault signal[J].Vibration and Shock,2001,20(2):25-28.
王宏超,陈进,董广明.基于最小熵解卷积与稀疏分解的滚动轴承微弱故障特征提取[J].机械工程学报,2013,49(1):88-94.
WANG Hongchao,CHEN Jin,DONG Guangming.Fault diagnosis for rolling bearing's weak fault based on minimum entropy deconvolution and sparse decomposition[J].Journal of Mechanical Engineering,2013,49(1):88-94.
张志刚,石晓辉,施全,等.基于改进EMD和谱峭度法滚动轴承故障特征提取[J].振动、测试与诊断,2013,33(3):478-482.
ZHANG Zhigang,SHI Xiaohui,SHI Quan,et al.Fault feature extraction of rolling element bearing based on improved EMD and spectral kurtosis[J].Journal of Vibration,Measurement & Diagnosis,2013,33(3):478-482.
毕果.基于循环平稳的滚动轴承及齿轮微弱故障特征提取应用研究[D].上海:上海交通大学,2007:37-42.
BI Guo.Study on weak fault characteristics extraction of rolling element bearing and gear based on cyclostationarity[D].Shanghai:Shanghai Jiao Tong University,2007:37-42.
ZHAO M,LIN J,MIAO Y,et al.Detection and recovery of fault impulses via improved harmonic product spectrum and its application in defect size estimation of train bearings[J].Measurement,2016,91:421-439.
刘倩楠,郭瑜,伍星.滚动轴承外圈剥落故障双冲击特征机理建模[J].振动工程学报,2017,30(4):670-678.
LIU Qiannan,GUO Yu,WU Xing.Modeling of double impact characteristic mechanism for outer ring spalling fault of rolling bearing[J].Journal of Vibration Engineering,2017,30(4):670-678.
李春林,熊建斌,苏乃权,等.深度学习在故障诊断中的应用综述[J].机床与液压,2020,48(13):174-184.
LI Chunlin,XIONG Jianbin,SU Naiquan,et al.Summary of deep learning application in fault diagnosis[J].Machine Tool and Hydraulics,2020,48(13):174-184.
马云飞,贾希胜,白华军,等.基于一维CNN参数优化的压缩振动信号故障诊断[J].系统工程与电子技术,2020,42(9):1911-1919.
MA Yunfei,JIA Xisheng,BAI Huajun,et al.Fault diagnosis of compressed vibration signal based on one-dimensional CNN parameter optimization[J].Systems Engineering and Electronics,2020,42(9):1911-1919.
仝钰,庞新宇,魏子涵.基于GADF-CNN的滚动轴承故障诊断方法[J].振动与冲击,2021,40(5):247-253.
TONG Yu,PANG Xinyu,WEI Zihan.Rolling bearing fault diagnosis method based on GADF-CNN[J].Journal of Vibration and Shock,2021,40(5):247-253.
张立智,徐卫晓,井陆阳,等.基于二维深度卷积网络的旋转机械故障诊断[J].机械强度,2020,42(5):1039-1044.
ZHANG Lizhi,XU Weixiao,JING Luyang,et al.Rotating machinery fault diagnosis based on 2D convolutional neural network[J].Journal of Mechanical Strength,2020,42(5):1039-1044.
后方帅,黎美琪,刘若伦.利用谐波显著度和语者音色特征的混合语音中目标人基频轨迹提取[J].声学技术,2019,38(4):408-413.
HOU Fangshuai,LI Meiqi,LIU Ruolun.Target pitch trajectory extraction in hybrid speech by using harmonic saliency and speaker's timbre features[J].Acoustical Technology,2019,38(4):408-413.
薛璇怡,庞新宇.基于1-DCNN的行星齿轮箱故障诊断[J].机械传动,2020,44(11):127-133.
XUE Xuanyi,PANG Xinyu.Fault diagnosis of planetary gearbox based on 1-DCNN[J].Journal of Mechanical Transmission,2020,44(11):127-133.
JING L Y,ZHAO M,LI P,et al.A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox[J].Measurement,2017,111:1-10.
康传章,陈兵奎,张靖,等.齿轮系统振动信号的边频带研究及其应用[J].机械传动,2013,37(4):41-43.
KANG Chuanzhang,CHEN Bingkui,ZHANG Jing,et al.Research on the sideband of gear system vibration signal and its application[J].Journal of Mechanical Transmission,2013,37(4):41-43.
冯志鹏,赵镭镭,褚福磊.行星齿轮箱故障诊断的幅值解调分析方法[J].中国电机工程学报,2013,33(8):107-111.
FENG Zhipeng,ZHAO Leilei,CHU Fulei.Amplitude demodulation analysis method for fault diagnosis of planetary gearbox[J].Proceedings of the CSEE,2013,33(8):107-111.
冯志鹏,赵镭镭,褚福磊.行星齿轮箱齿轮局部故障振动频谱特征[J].中国电机工程学报,2013,33(5):119-127.
FENG Zhipeng,ZHAO Leilei,CHU Fulei.Vibration spectrum characteristics of gear local fault in planetary gearbox[J].Proceedings of the CSEE,2013,33(5):119-127.
AZAMI H,MOHAMMADI K,BOZORGTABAR B.An improved signal segmentation using moving average and savitzky-golay filter[J].Journal of Signal & Information Processing,2012,3(1):39-44.
吴守军,冯辅周,吴春志,等.快速峭度谱用于复合行星齿轮故障特征提取[J].机械传动,2019,43(10):151-157.
WU Shoujun,FENG Fuzhou,WU Chunzhi,et al.Application of fast kurtosis spectrum in fault feature extraction of compound planetary gear[J].Journal of Mechanical Transmission,2019,43(10): 151-157.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构