1.武汉理工大学 机电工程学院, 湖北 武汉 430070
2.武汉理工大学 绍兴高等研究院, 浙江 绍兴 312000
3.浙江来福谐波传动股份有限公司, 浙江 绍兴 312000
邱临风(1996— ),男,浙江嘉兴人,在读硕士研究生;研究方向为谐波齿轮传动动力学性能研究。
陈满意(1966— ),男,湖北武汉人,博士,教授;研究方向为复杂曲面数控加工与检测和齿轮传动等研究。
扫 描 看 全 文
邱临风,陈满意,宋港等.基于遗传特性的谐波齿轮传动迟滞刚度模型及其参数辨识研究[J].机械传动,2022,46(04):37-41.
Qiu Linfeng,Chen Manyi,Song Gang,et al.A Study on Hysteresis Stiffness Model and Parameter Identification of Harmonic Gear Transmission based on Genetic Characteristic[J].Journal of Mechanical Transmission,2022,46(04):37-41.
邱临风,陈满意,宋港等.基于遗传特性的谐波齿轮传动迟滞刚度模型及其参数辨识研究[J].机械传动,2022,46(04):37-41. DOI: 10.16578/j.issn.1004.2539.2022.04.005.
Qiu Linfeng,Chen Manyi,Song Gang,et al.A Study on Hysteresis Stiffness Model and Parameter Identification of Harmonic Gear Transmission based on Genetic Characteristic[J].Journal of Mechanical Transmission,2022,46(04):37-41. DOI: 10.16578/j.issn.1004.2539.2022.04.005.
迟滞刚度是谐波齿轮传动的固有属性。传统谐波齿轮传动动力学建模时,是将刚度考虑为定刚度或分段定刚度,这样的简化会导致动力学模型精度降低。考虑谐波传动刚度的非线性迟滞特性,提出了一种基于遗传特性的新型谐波齿轮传动迟滞刚度模型,其特点是传动刚度的大小与系统所经历过的状态有关。基于实验数据,利用粒子群算法进行了模型参数辨识。以某型号谐波减速器为实验对象,进行了加载/卸载性能测试。拟合结果表明,所建立的非线性迟滞刚度模型与实验数据高度吻合,相比传统模型,精度大大提高。
Hysteresis stiffness is an inherent property of harmonic gear drive. In the traditional dynamic modeling of harmonic gear drive,the stiffness is considered as fixed stiffness or piecewise fixed stiffness,which will lead to reduction of the accuracy of the dynamic model. Considering the nonlinear hysteretic characteristics of harmonic drive stiffness, a new hysteretic stiffness model of harmonic gear drive based on genetic characteristics is proposed. The characteristic of the model is that the transmission stiffness is related to the state experienced by the system. Based on the experimental data,particle swarm optimization algorithm is used to identify the model parameters. Taking a certain type of harmonic reducer as the experimental object, the load/unload performance of a harmonic reducer is tested. The fitting results show that the nonlinear hysteretic stiffness model is in good agreement with the experimental data, and the accuracy is greatly improved compared with the traditional model.
谐波齿轮传动迟滞刚度模型粒子群算法
Harmonic gear driveHysteresis stiffness modelParticle swarm optimization algorithm
黑沫,范世珣,廖洪波,等.精密谐波传动系统建模[J].光学精密工程,2014,22(7):1842-1849.
HEI Mo,FAN Shixun,LIAO Hongbo,et al.Modeling of precision harmonic drive system[J].Optics and Precision Engineering,2014,22(7):1842-1849.
姜自莲,李刚俊.用于精确位置控制的谐波传动控制精度研究[J].中国测试,2015,41(2):96-100.
JIANG Zilian,LI Gangjun.Study of resolution for harmonic drive controller with friction in precision system[J].China Measurement and Test,2015,41(2):96-100.
秦宇辉,辛洪兵,李增,等.谐波齿轮减速器传动性能的实验研究[J].北京工商大学学报(自然科学版),2004(3):17-20.
QIN Yuhui,XIN Hongbing,LI Zeng,et al.Experimental research on transmission performances of harmonic drive[J].Journal of Beijing Technology and Business University(Natural Science Edition),2004(3):17-20.
黄海涛,王湘江.谐波齿轮传动误差的补偿控制[J].现代机械,2013(5):4-8.
HUANG Haitao,WANG Xiangjiang.The compensation controlling of harmonic gear transmission error[J].Modern Machinery,2013(5):4-8.
TUTTLE D T,SEERING P W.A nonlinear model of a harmonic drive gear transmission[J].IEEE Transactions on Robotics and Automation,1996,12(3):368-374.
TAGHIRAD H D,BELANGER P R.Modeling and parameter identification of harmonic drive systems[J].Journal of Dynamic Systems Measurement and Control,1998,120(4):439-444.
TJAHJO-WIDODO T,AL-BENDER F,BRUSSEL V H.Theoretical modelling and experimental identification of nonlinear torsional behaviour in harmonic drives[J].Mechatronics,2013,23(5):497-504.
PREISSNER C,ROYSTON T J,SHU D M.A high-fidelity harmonic drive model[J].Dissertations and Theses-Gradworks,2012,134(1):11002-11013.
DHAOUADI R,GHORBEL F H,GANDHI P S.A new dynamic model of hysteresis in harmonic drives[J].IEEE Transactions on Industrial Electronics,2003,50(6):1165-1171.
TANG T,JIA,LI J Y,et al.Modeling of transmission compliance and hysteresis considering degradation in a harmonic drive[J].Applied Sciences,2021,11(2):665.
LU Q,GANG T Q,HAO G B,et al.Compound optimal control of harmonic drive considering hysteresis characteristic[J].Mechanical Sciences,2019,10(2):383-391.
罗阳,陈满意,张杰,等.谐波齿轮传动非线性动力学建模及仿真研究[J].机械传动,2021,45(4):58-63.
LUO Yang,CHEN Manyi,ZHANG Jie,et al.Research on nonlinear dynamics modeling and simulation of harmonic gear drive[J].Journal of Mechanical Transmission,2021,45(4):58-63.
唐小欢.含非线性因素谐波齿轮传动模型的研究[D].衡阳:南华大学,2017:53-58.
TANG Xiaohuan.Study on the harmonic gear drive model with nonlinear factors[D].Hengyang:University of South China,2017:53-58.
肖前进.谐波传动式电动舵机多级滑模控制及非线性补偿研究[D].北京:中国科学院大学,2013:53-65.
XIAO Qianjin.Study on multiple sliding mode control and nonlinear compensation for EMA with harmonic gear drive[D].Beijing:University of Chinese Academy of Sciences,2013:53-65.
RUDERMAN M,BERTRAM T,IWASAKI M.Modeling,observation,and control of hysteresis torsion in elastic robot joints[J].Mechatronics,2014,24(5):407-415.
PREISSNER C.A high-fidelity harmonic drive model:experiment,simulation,and application.[D].Chicago:University of Illinois at Chicago,2009:1-8.
张活俊,江励,汤健华,等.基于强化学习的抛光机器人主动力控制研究[J].机械工程师,2020(9):31-34.
ZHANG Huojun,JIANG Li,TANG Jianhua,et al.Research on active force control of polishing robot based on reinforcement learning[J].Mechanical Engineer,2020(9):31-34.
陈旭亮,张琛,季宏丽,等.SMA鼓包迟滞建模与控制策略研究[J].航空学报,2021,42(9):411-420.
CHEN Xuliang,ZHANG Chen,JI Hongli,et al.Research on SMA bump hysteresis modeling and control strategy[J].Acta Aeronautica et Astronautica Sinica,2021,42(9):411-420.
全国减速机标准化技术委员会.机器人用谐波齿轮减速器:GB/T 30819—2014[S].北京:中国标准出版社,2014:16-17.
National Technical Committee on Gear Reducer of Standardization Administration of China.Harmonic drive gear reducers for robots:GB/T 30819—2014[S].Beijing:China Standards Press,2014:16-17.
0
浏览量
8
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构