1.黄河交通学院 汽车工程学院, 河南 焦作 454950
2.河南理工大学 机械工程学院, 河南 焦作 454003
3.河南省东泰齿轮有限公司, 河南 新乡 453400
刘传慧(1967— ),女,河南滑县人,硕士,高级工程师;主要从事于机械设计与机械制造。
扫 描 看 全 文
刘传慧,陈晓静,侯晓晓等.基于DWAE和GRUNN组合模型的变工况齿轮箱故障诊断分析[J].机械传动,2022,46(02):155-159.
Liu Chuanhui,Chen Xiaojing,Hou Xiaoxiao,et al.Fault Diagnosis Analysis of Variable Working Condition Gearbox based on DWAE and GRUNN Combination Model[J].Journal of Mechanical Transmission,2022,46(02):155-159.
刘传慧,陈晓静,侯晓晓等.基于DWAE和GRUNN组合模型的变工况齿轮箱故障诊断分析[J].机械传动,2022,46(02):155-159. DOI: 10.16578/j.issn.1004.2539.2022.02.025.
Liu Chuanhui,Chen Xiaojing,Hou Xiaoxiao,et al.Fault Diagnosis Analysis of Variable Working Condition Gearbox based on DWAE and GRUNN Combination Model[J].Journal of Mechanical Transmission,2022,46(02):155-159. DOI: 10.16578/j.issn.1004.2539.2022.02.025.
为了更好地识别噪声与时变转速条件对变工况齿轮箱的故障,开发了一种通过深度小波自动编码器(DWAE)与门控循环单元神经网络(GRUNN)相结合的变工况齿轮箱故障识别方法,其能够从含噪样本自主提取得到鲁棒故障特征;通过Adam与Dropout方法进行训练,通过Softmax分类器对待诊样本的变工况齿轮箱运行状态进行了准确识别。研究结果表明,采用该模型识别齿轮故障时,能够达到有效分离齿轮的6种故障状态,从而满足齿轮状态聚类的优化功能;该模型能够提取出DWAE的鲁棒特征参数,也可以发挥GRUNN以实现消除梯度的效果。当训练样本数增加,待诊样本的准确率也发生了明显提升。样本数超过200后,测试待诊样本可获得稳定准确率,通过DWAE-GRUNN方法识别得到的准确率最高。针对变转速工况,该模型可以保持很好的准确率。
In order to better identify the faults of gearbox under varying working conditions caused by noise and time-varying speed conditions, a fault identification method of gearbox under varying conditions is developed by combining DWAE and GRUNN, which could extract robust fault characteristics from noisy samples. The Adam and Dropout methods are used for training, and the softmax classifier is used to accurately identify the operating state of the gearbox under different working conditions. The results show that the six fault states of gears can be separated effectively when the model is used to identify gear faults, so as to meet the optimization function of gear state clustering. This model can extract the robust characteristic parameters of DWAE, and it can also use GRUNN to eliminate the gradient. When the number of training samples increased, the accuracy of waiting samples also improved significantly. When the number of samples is more than 200, stable accuracy could be obtained by testing the waiting samples, and the accuracy is the highest by dWAe-Grunn method. The model can maintain good accuracy under variable speed working conditions.
变工况齿轮箱故障识别深度小波自动编码器门控循环单元神经网络准确率
Variable working condition gearboxFault identificationDeep wavelet autoencoder (DWAE)Gated cyclic unit neural network (GRUNN)Accuracy
吕枫,王义,阮胡林,等.深度嵌入关系空间下齿轮箱标记样本扩充及其半监督故障诊断方法[J].仪器仪表学报,2021,42(2):55-65.
LÜ Feng,WANG Yi,RUAN Hulin,et al.Gearbox marking sample extension and semi-supervised fault diagnosis method in deep embedding relation space[J].Chinese Journal of Scientific Instrument,2021,42(2):55-65.
彭珍瑞,刘臻.基于故障可诊断性的齿轮箱传感器优化布置[J].振动与冲击,2021,40(4):155-163.
PENG Zhenrui,LIU Zhen.Optimal arrangement of gearbox sensor based on fault diagnostics[J].Journal of Vibration and Shock,2021,40(4):155-163.
WANG L,ZHANG Z,LONG H,et al.Wind turbine gearbox failure identification with deep neural networks[J].IEEE Transactions on Industrial Informatics,2017,13(3):1360-1368.
郑小霞,陈广宁,任浩翰,等.基于改进VMD和深度置信网络的风机易损部件故障预警[J].振动与冲击,2019,38(8):153-160.
ZHENG Xiaoxia,CHEN Guangning,REN Haohan,et al.Fault detection of vulnerable units of wind turbine based on improved VMD and DBN[J].Journal of Vibration and Shock,2019,38(8):153-160.
叶柯华,李春,胡璇.基于经验小波变换和关联维数的风力机齿轮箱故障诊断[J].动力工程学报,2021,41(2):113-120.
YE Kehua,LI Chun,HU Xuan.Fault diagnosis of wind turbine gearbox based on empirical wavelet transform and correlation dimentation[J].Chinese Journal of Power Engineering,2021,41(2):113-120.
WANG X,QIN Y,ZHANG A B.An intelligent fault diagnosis approach for planetary gearboxes based on deep belief networks and uniformed features[J].Journal of Intelligent and Fuzzy Systems,2018,34(6):3619-3634.
李松柏,康子剑,陶洁.基于信息融合及堆栈降噪自编码的齿轮故障诊断[J].振动与冲击,2019,38(5):216-221.
LI Songbai,KANG Zijian,TAO Jie.Gear fault diagnosis based on information fusion and stacked denoising autoencoder[J].Journal of Vibration and Shock,2019,38(5):216-221.
WANG Z R,WANG J,WANG Y R.An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition[J].Neurocomputing,2018,310:213-222.
JIA F,LEI Y G,GUO L,et al.A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines[J].Neurocomputing,2018,272:619-628.
JING L Y,ZHAO M,LI P,et al.A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox[J].Measurement,2017,111:1-10.
ZHAO M,KANG M,TANG B,et al.Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes[J].IEEE Transactions on Industrial Electronics,2017,65(5):4290-4300.
ZHAO R,WANG D,YAN R,et al.Machine health monitoring using local feature-based gated recurrent unit networks[J].IEEE Transactions on Industrial Electronics,2017,65(2):1539-1548.
JIANG H K,LI X Q,SHAO H D,et al.Intelligent fault diagnosis of rolling bearing using improved deep recurrent neural network[J].Measurement Science and Technology,2018,29(6):065107.
于军,高莲莲,于广滨,等.基于DWAE和GRUNN的齿轮故障识别[J].振动与冲击,2021,40(2):156-163.
YU Jun,GAO Lianlian,YU Guangbin,et al.Fault identification of planetary gear based on DWAE and GRUNN[J].Journal of Vibration and Shock,2021,40(2):156-163.
魏海文,郭业才.门控递归单元神经网络坐标变换盲均衡算法[J].微电子学与计算机,2019,36(9):89-93.
WEI Haiwen,GUO Yecai.A blind equalization algorithm for coordinate transformation based on gated recursive element neural network[J].Microelectronics and Computer,2019,36(9):89-93.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构