1.武汉大学 动力与机械学院, 湖北 武汉 430072
周建华(1998— ),男,吉林松原人,硕士;研究方向为信号处理和故障诊断。
王晓笋(1979— ),男,安徽怀宁人,教授,博士生导师;研究方向为机械(车辆、风电)传动系统振动,机械系统粗糙接触表面摩擦、磨损与润滑。
扫 描 看 全 文
周建华,郑攀,王帅星等.基于小波时频图和卷积神经网络的行星齿轮箱故障诊断方法[J].机械传动,2022,46(01):156-163.
Zhou Jianhua,Zheng Pan,Wang Shuaixing,et al.Fault Diagnosis Method of Planetary Gearbox based on Wavelet Time-frequency Diagram and Convolutional Neural Network[J].Journal of Mechanical Transmission,2022,46(01):156-163.
周建华,郑攀,王帅星等.基于小波时频图和卷积神经网络的行星齿轮箱故障诊断方法[J].机械传动,2022,46(01):156-163. DOI: 10.16578/j.issn.1004.2539.2022.01.022.
Zhou Jianhua,Zheng Pan,Wang Shuaixing,et al.Fault Diagnosis Method of Planetary Gearbox based on Wavelet Time-frequency Diagram and Convolutional Neural Network[J].Journal of Mechanical Transmission,2022,46(01):156-163. DOI: 10.16578/j.issn.1004.2539.2022.01.022.
针对行星齿轮箱故障诊断中故障类型难以区分的问题,提出了一种基于小波时频图和卷积神经网络相结合的行星齿轮箱故障诊断方法。首先,对原始信号进行连续小波变换,获取小波时频图;然后,对小波时频图进行统一处理和压缩,将处理好的小波时频图输入到卷积神经网络中进行分类识别,通过调整小波基函数和卷积神经网络参数,最终得到一个较为理想的诊断模型。试验证明,在训练集数据和测试集数据转速不同的情况下,该方法与BP神经网络相比,在诊断准确率和鲁棒性方面都有提升。该方法的研究为行星齿轮箱的故障诊断提供了参考。
Difficulties are always encountered when distinguish the fault types in the planetary gearbox diagnosis. A new fault diagnosis method with implementation of wavelet time-frequency diagram and convolutional neural network is proposed. At first,the continuous wavelet transform is used on the original signal to obtain the wavelet time-frequency diagrams. Secondly,the wavelet time-frequency diagrams are processed and compressed,the processed wavelet time-frequency diagrams are input into the convolutional neural network to classify and identify. Finally,the wavelet basis function and convolution neural network parameters are adjusted in order to get an ideal diagnosis model. Experimental results show that the proposed method has better diagnostic accuracy and robustness than the BP neural network when the speed of training set data and test set data is different. This approach provides a reference for planetary gearbox fault diagnosis.
行星齿轮箱故障诊断连续小波变换小波时频图卷积神经网络
Planetary gearbox fault diagnosisContinuous wavelet transformWavelet time-frequency diagramConvolutional neural network
胡茑庆,陈徽鹏,程哲,等.基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J].机械工程学报,2019,55(7):9-18.
HU Niaoqing,CHEN Huipeng,CHENG Zhe,et al.Fault diagnosis for planetary gearbox based on EMD and deep convolutional neural networks[J].Journal of Mechanical Engineering,2019,55(7):9-18.
LEI Y G,LIN J,ZUO M J,et al.Condition monitoring and fault diagnosis of planetary gearboxes:a review[J].Measurement,2014,48:292-305.
AGRAWAL K A,CHATTOPADHYAYA S,MURTHY V M S R,et al.A novel method of laser coating process on worn-out cutter rings of tunnel boring machine for eco-friendly reuse[J].Symmetry(Basel),2020,12(3):471.
GU Y K,ZHANG M,ZHOU X Q.Fault diagnosis of gearbox based on improved DUCG with combination weighting method[J].IEEE Access,2019(7):92955-92967.
李海平,赵建民,张鑫,等.行星齿轮箱齿轮磨损故障诊断[J].振动与冲击,2019,38(23):84-89.
LI Haiping,ZHAO Jianmin,ZHANG Xin,et al.Fault diagnosis for gear wear of planetary gearbox[J].Journal of Virration and Shock,2019,38(23):84-89.
丁康,李巍华,朱小勇.齿轮及齿轮箱故障诊断实用技术[M].北京:机械工业出版社,2006:1-10.
DING Kang,LI Weihua,ZHU Xiaoyong.Practical technology for fault diagnosis of gears and gearboxes[M].Beijing:Mechanical Industry Press,2006:1-10.
雷亚国,何正嘉,林京,等.行星齿轮箱故障诊断技术的研究进展[J].机械工程学报,2011,47(19):59-67.
LEI Yaguo,HE Zhengjia,LIN Jing,et al.Research advances of fault diagnosis technique for planetary gearboxes[J].Journal of Mechanical Engineering,2011,47(19):59-67.
孔祥鑫.平行轴系齿轮箱变工况故障诊断方法研究[D].北京:北京化工大学,2016:5-11.
KONG Xiangxin.The research of fault diagnosis method about parallel shafts gearbox in variable condition[D].Beijing:Beijing University of Chemical Technology,2016:5-11.
孟玲霞,徐小力,左云波.时变工况行星齿轮箱对数时频脊阶次谱故障特征提取[J].振动与冲击,2020,39(7):163-169.
MENG Lingxia,XU Xiaoli,ZUO Yunbo.Fault feature extraction of logarithmic time-frequency ridge order spectrum of planetary gearbox under time-varying conditions[J].Journal of Vibration and Shock,2020,39(7):163-169.
华伟,行志刚,荆双喜.基于平移不变多小波变换的齿轮故障诊断[J].机械传动,2016,40(2):142-145.
HUA Wei,XING Zhigang,JING Shuangxi.Fault diagnosis of gear based on translation invariant multiwavelet transform[J].Journal of Mechanical Transmission,2016,40(2):142-145.
唐静,王二化,朱俊,等.基于EMD和SVM的齿轮裂纹故障诊断研究[J].机床与液压,2020,48(14):200-204.
TANG Jing,WANG Erhua,ZHU Jun,et al.Research on gear crack fault diagnosis based on EMD and SVM[J].Machine Tool&Hydraulics,2020,48(14):200-204.
朱静,邓艾东,邓敏强,等.基于MED和自适应VMD的行星齿轮箱故障诊断方法[J].东南大学学报(自然科学版),2020,50(4):698-704.
ZHU Jing,DENG Aidong,DENG Minqiang,et al.Fault diagnosis of planetary gearbox based on MED and adaptive VMD[J].Journal of Southeast University(Natural Science Edition),2020,50(4):698-704.
张安安,黄晋英,卫洁洁,等.基于EMD-SVD与PNN的行星齿轮箱故障诊断研究[J].机械传动,2018,42(12):160-165.
ZHANG An'an,HUANG Jinying,WEI Jiejie,et al.Research of fault diagnosis of planetary gearbox based on EMD-SVD and PNN[J].Journal of Mechanical Transmission,2018,42(12):160-165.
何雷,刘溯奇,蒋婷,等.基于改进LMD与BP神经网络的变速箱故障诊断[J].机械传动,2020,44(1):171-176.
HE Lei,LIU Suqi,JIANG Ting,et al.Gearbox fault diagnosis based on improved LMD and BP neural network[J].Journal of Mechanical Transmission,2020,44(1):171-176.
刘放,王衍学.基于多域特征与改进D-S证据理论的齿轮故障智能诊断方法[J].机械传动,2019,43(9):159-165.
LIU Fang,WANG Yanxue.Gear fault diagnosis method based on multi-domain feature and improved D-S evidence theory[J].Journal of Mechanical Transmission,2019,43(9):159-165.
张鲁洋,秦波,尹恒,等.基于ELMD能量熵与AFSA-SVM的行星齿轮箱关键部件故障诊断研究[J].机械传动,2018,42(6):164-170.
ZHANG Luyang,QIN Bo,YIN Heng,et al.Fault diagnosis of planetary gearbox key component based ELMD energy entropy and AFSA-SVM[J].Journal of Mechanical Transmission,2018,42(6):164-170.
叶壮,余建波.基于多通道一维卷积神经网络特征学习的齿轮箱故障诊断方法[J].振动与冲击,2020,39(20):55-66.
YE Zhuang,YU Jianbo.Gearbox fault diagnosis based on feature learning of multi-channel one-dimensional convolutional neural network[J].Journal of Vibration and Shock,2020,39(20):55-66.
寇海霞,安宗文,刘波,等.基于贝叶斯网络的风电齿轮箱可靠性分析[J].兰州理工大学学报,2016,42(1):40-45.
KOU Haixia,AN Zongwen,LIU Bo,et al.Reliability analysis of wind turbine gearbox based on Bayesian network[J].Journal of Lanzhou University of Technology,2016,42(1):40-45.
刘长良,张书瑶,王梓齐,等.基于改进KNN回归算法的风电机组齿轮箱状态监测[J].中国测试,2021,47(1):153-159.
LIU Changliang,ZHANG Shuyao,WANG Ziqi,et al.Condition monitoring of wind turbine gearbox based on improved KNN regression algorithm[J].China Measurement & Test,2021,47(1):153-159.
任浩,屈剑锋,柴毅,等.深度学习在故障诊断领域中的研究现状与挑战[J].控制与决策,2017,32(8):1345-1358.
REN Hao,QU Jianfeng,CHAI Yi,et al.Deep learning for fault diagnosis:the state of the art and challenge[J].Control and Decision,2017,32(8):1345-1358.
樊玉琦,温鹏飞,许雄,等.基于卷积神经网络的雷达目标航迹识别研究[J].强激光与粒子束,2019,31(9):68-73.
FAN Yuqi,WEN Pengfei,XU Xiong,et al.Research on radar target track recognition based on convolutional neural network[J].High Power Laser and Particle Beams,2019,31(9):68-73.
魏明果.实用小波分析[M].北京:北京理工大学出版社,2005:1-10.
WEI Mingguo.Practical wavelet analysis[M].Beijing:Beijing Institute of Technology Press,2005:1-10.
LIANG P F,DENG C,WU J,et al.Intelligent fault diagnosis of rotating machinery via wavelet transform,generative adversarial nets and convolutional neural network[J].Measurement,2020,159:1-10.
KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C].Advances in neural information processing Systems,2012:1097-1105.
ZHANG W,PENG G L,LI C H,et al.A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J].Sensors,2017,17(2):425.
WANG X,MAO D X,LI X D.Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network[J].Measurement,2020,173(6):1-13.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构