1.重庆大学 机械传动国家重点实验室, 重庆 400044
2.郑州机械研究所有限公司, 河南 郑州 450001
陈玲(1995— ),女,湖北松滋人,硕士研究生;主要研究方向为齿轮疲劳失效的微观结构分析。
魏沛堂(1984— ),男,山东临沂人,副教授,博士生导师;主要研究方向为高性能齿轮抗疲劳设计制造。
扫 描 看 全 文
陈玲,魏沛堂,刘怀举等.齿轮接触疲劳微观结构作用研究综述[J].机械传动,2022,46(01):1-18.
Chen Ling,Wei Peitang,Liu Huaiju,et al.Review on the Effect of Microstructure on Gear Contact Fatigue[J].Journal of Mechanical Transmission,2022,46(01):1-18.
陈玲,魏沛堂,刘怀举等.齿轮接触疲劳微观结构作用研究综述[J].机械传动,2022,46(01):1-18. DOI: 10.16578/j.issn.1004.2539.2022.01.001.
Chen Ling,Wei Peitang,Liu Huaiju,et al.Review on the Effect of Microstructure on Gear Contact Fatigue[J].Journal of Mechanical Transmission,2022,46(01):1-18. DOI: 10.16578/j.issn.1004.2539.2022.01.001.
随着航空、风电等装备对齿轮传动功率密度、承载能力、寿命要求的提高,齿轮接触疲劳失效成为限制现代齿轮装备服役性能与可靠性的重要瓶颈,其中,材料的微观结构特征从根本上决定了齿轮等服役件疲劳性能的优劣。通过调研国内外相关研究现状,介绍了齿轮材料中残余奥氏体、碳化物、晶粒等主要微观结构及其对齿轮接触疲劳性能的影响。归纳了现有基于微观结构建模和微结构力学本构模型的齿轮疲劳数值模拟方法,用来描述齿轮接触疲劳中的微结构力学行为,以提升对齿轮疲劳关键特征和机理的理解。重点对齿轮存在的多种接触疲劳失效形式进行了详细阐述,分析了影响齿轮接触疲劳失效的主导因素、诱发的微观结构与力学性能变化特征以及潜在机理。为进一步理解齿轮服役过程中的微观结构演化特征与力学性能退化的关联关系以及接触疲劳失效内在机理、形成高性能齿轮抗疲劳设计制造方法提供了参考。
With the increasing requirements of power density,load capacity and service life of gear transmission for aviation,wind power and other equipment,gear contact fatigue failure has become an important bottleneck limiting the service performance and reliability of modern gear equipment,and the material microstructure characteristics determine the fatigue performance of gear and other service parts. Through the surveys of the current related research situation both at home and abroad,the main microstructure features of gear materials such as retained austenite,carbide,grain size and their influence on the contact fatigue performance of gears are introduced. The reported numerical simulations of gear contact fatigue based on microstructure modeling and micromechanics constitutive model are summarized to describe the microscopic mechanical behavior of in gear contact fatigue,and to improve the understanding of the key characteristics and mechanism of gear fatigue. The various contact fatigue failure forms of gears occurred in the engineering practice are expounded in detail,and the main factors affecting the contact fatigue failure of gears,the induced microstructure evolution and degradation of mechanical properties,as well as the potential mechanisms of the gear contact fatigue failure,are analyzed. This review aims to provide the further understanding of the relationship between microstructure evolution characteristics and mechanical property degradation during the service process of gears,as well as the internal mechanism of contact fatigue failure,and providing the reference for anti-fatigue design and manufacturing method of high-performance gears.
齿轮传动接触疲劳微观结构性能退化失效机理
Gear transmissionContact fatigueMicrostructurePerformance degradationFailure mechanism
SIDDIQUI A N,DEEN K M,KHAN Z M,et al.Investigating the failure of bevel gears in an aircraft engine[J].Case Studies in Engineering Failure Analysis,2013,1(1):24-31.
LINK H,LA CAVA W,VAN DAM J,et al.Gearbox reliability collaborative project report:findings from phase 1 and phase 2 testing[J].Office of Scientific and Technical Information,2011:1-88.
MA R,CHEN Y S,CAO Q J.Research on dynamics and fault mechanism of spur gear pair with spalling defect[J].Journal of Sound and Vibration,2012,331(9):2097-2109.
EVANS H P,SNIDLE R W,SHARIF K J,et al.Analysis of micro-elastohydrodynamic lubrication and prediction of surface fatigue damage in micropitting tests on helical gears[J].Journal of Tribology-Transactions of the ASME,2013,135(1):1-9.
MACKALDENER M,OLSSON M.Interior fatigue fracture of gear teeth[J].Fatigue & Fracture of Engineering Materials & Structures,2000,23(4):283-292.
WANG W,LIU H J,ZHU C C,et al.Effects of microstructure on rolling contact fatigue of a wind turbine gear based on crystal plasticity modeling[J].International Journal of Fatigue,2019,120:73-86.
LIU H L,LIU H J,BOCHER P,et al.Effects of case hardening properties on the contact fatigue of a wind turbine gear pair[J].International Journal of Mechanical Sciences,2018,141:520-527.
LIU H L,LIU H J,ZHU C C,et al.Evaluation of contact fatigue life of a wind turbine gear pair considering residual stress[J].Journal of Tribology,2018,140(4):1-9.
SNIDLE R W,EVANS H P,ALANOU M,et al.Understanding scuffing and micropitting of gears[C]//NATO Research and Technology Organization Specialists' Meeting on the Control and Reduction of Wear in Military Platforms,June 7-9,2003,Willimsburg,USA.Brussels:NATO,RTO-MP-AVT-109,2003:1-18.
YADAV A.Different types failure in gears-a review[J].International.Journal of Science Engineering and Technology Research,2012,1:86-92.
高玉魁,赵振业.齿轮的表面完整性与抗疲劳制造技术的发展趋势[J].金属热处理,2014,39(4):1-6.
GAO Yukui,ZHAO Zhenye.The development trend of gear surface integrity and fatigue resistance manufacturing technology[J].Metal Heat Treatment,2014,39(4):1-6.
马威,陆军.渗碳淬火齿轮渗层质量评价综述[J].机械传动,2015,39(10):170-175.
MA Wei,LU Jun.Review on quality evaluation of carburized and hardened gears[J].Journal of Mechanical Transmission,2015,39(10):170-175.
CUBILLO A,PERINPANAYAGAM S,ESPERON-MIGUEZ M.A review of physics-based models in prognostics:application to gears and bearings of rotating machinery[J].Advances in Mechanical Engineering,2016,8(8):1012-1024.
LIU H L,LIU H J,ZHU C C,et al.A review on micropitting studies of steel gears[J].Coatings,2019,9(1):1-27.
LIU H L,LIU H J,ZHU C C,et al.Effects of lubrication on gear performance:a review[J].Mechanism and Machine Theory,2019,145:1-14.
KOYAMA M,XI Z J,YOSHIDA Y,et al.Intergranular fatigue crack initiation and its associated small fatigue crack propagation in water-quenched Fe-C fully ferritic steel[J].ISIJ International,2015,55(11):2463-2468.
FARFAN S,RUBIO-GONZALEZ C,CERVANTES-HERNA NDEZ T,et al.High cycle fatigue,low cycle fatigue and failure modes of a carburized steel[J].International Journal of Fatigue,2003,26(6):673-678.
SANGID M D.The physics of fatigue crack initiation[J].International Journal of Fatigue,2013,57(12):58-72.
NICK W,FARSHID S,VASILIOS B.An approach for modeling material grain structure in investigations of hertzian subsurface stresses and rolling contact fatigue[J].Journal of Tribology,2010,132(4):1-12.
WALVEKAR A A,PAULSON N,SADEGHI F,et al.A new approach for fatigue damage modeling of subsurface-initiated spalling in large rolling contacts[J].Journal of Tribology,2017,139(1):1-15.
ARAKERE N K.Gigacycle rolling contact fatigue of bearing steels:A review[J].International Journal of Fatigue,2016,93:238-249.
CASTELLUCCIO G M,MUSINSKI W D,MCDOWELL D L.Computational micromechanics of fatigue of microstructures in the HCF–VHCF regimes[J].International Journal of Fatigue,2016,93:387-396.
SADEGHI F,JALALAHMADI B,SLACK T S,et al.A Review of rolling contact fatigue[J].Journal of Tribology,2009,131(4):1-15.
SLACK T S,LEONARD B D,SADEGHI F.Estimating life scatter in fretting fatigue crack initiation[J].Tribology and Lubrication Technology,2013,69(10):64-66.
WISE J P,KRAUSS G,MATLOCK D.Microstructure and fatigue resistance of carburized steels[J].ASM Proceedings:Heat Treating,2001,2:1152-1161.
DAVIS J R.Gear materials,properties,and manufacture[M].USA:ASM International,2005:92-99.
李桂荣.浅谈残余奥氏体对钢的性能影响[J].山西建筑,2002,28(5):63.
LI Guirong.Effect of retained austenite on properties of steel[J].Shanxi Architecture,2002,28(5):63.
HERRING D H.A discussion of retained austenite[J].The Heat Treat Doctor,2005,72:14-16.
OOI G T C,ROY S,SUNDARARAJAN S.Investigating the effect of retained austenite and residual stress on rolling contact fatigue of carburized steel with XFEM and experimental approaches[J].Materials Science and Engineering:A,2018,732:311-319.
SHEN Y,MOGHADAM S M,SADEGHI F,et al.Effect of retained austenite – compressive residual stresses on rolling contact fatigue life of carburized AISI 8620 steel[J].International Journal of Fatigue,2015,75:135-144.
SHAW B A,ABUDAIA F,EVANS J M.Characterization of retained austenite in case carburized gears and its influence on fatigue performance[J].Gear Technology,2000(1):62-69.
DOMMARCO R C,KOZACZEK K J,BASTIAS P C,et al.Residual stresses and retained austenite evolution in SAE 52100 steel under non-ideal rolling contact loading[J].Wear,2004,257(11):1081-1088.
ROY S,OOI G T C,SUNDARARAJAN S.Effect of retained austenite on micropitting behavior of carburized AISI 8620 steel under boundary lubrication[J].Materialia,2018,3:192-201.
陈祥,李言祥.高硅铸钢残余奥氏体分布形态及其对力学性能的影响[J].金属学报,2007,43(3):235-239.
CHEN Xiang,LI Yanxiang.Distribution of retained austenite in high silicon cast steel and its effect on mechanical properties[J].Acta Metallurgica Sinica,2007,43(3):235-239.
高金柱,顾敏,王爱香,等.常用典型齿轮钢渗碳层的组织与性能[J].机械工程材料,2012,36(2):49-51.
GAO Jinzhu,GU min,WANG Aixiang,et al.Microstructure and properties of carburized layer of typical gear steel[J].Mechanical Engineering Materials,2012,36(2):49-51.
CAO Z X,SHI Z Y,YU F,et al.Effects of double quenching on fatigue properties of high carbon bearing steel with extra-high purity[J].International Journal of Fatigue,2019,128:1-6.
CAO Z X,LIU T Q,YU F,et al.Carburization induced extra-long rolling contact fatigue life of high carbon bearing steel[J].International Journal of Fatigue,2020,131(2):1-6.
张新宝.碳化物析出形态对高浓度渗碳材疲劳强度的影响[J].上海钢研,2006(4):57-62.
ZHANG Xinbao.Effect of carbide precipitation morphology on fatigue strength of high concentration Carburized Materials[J].Shanghai Steel Research Institute,2006(4):57-62.
SHUR A E,BYCHKOVA Y,N TRUSHEVSKY S M.Physical metallurgy aspects of rolling contact fatigue of rail steels[J].Wear,2004,258(7):1165-1171.
郭军.高合金轴承钢接触表面效应与疲劳行为的研究[D].昆明:昆明理工大学,2017:31-56.
GUO Jun.Study on contact surface effect and fatigue behavior of high alloy bearing steel[D].Kunming:Kunming University of Science and Technology,2017:31-56.
GUAN J,WANG L Q,ZHANG Z Q,et al.Fatigue crack nucleation and propagation at clustered metallic carbides in M50 bearing steel[J].Tribology International,2018,119:165-174.
LE M,VILLE F,KLEBER X,et al.Rolling contact fatigue crack propagation in nitrided alloyed steels[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2017,231(9):1192-1208.
胡芳忠,汪开忠,孙维,等.N含量对22CrMoH齿轮钢伪渗碳条件下晶粒度的影响[J].安徽冶金,2016(4):5-9.
HU Fangzhong,WANG Kaizhong,SUN Wei,et al.Effect of N content on grain size of 22CrMoH gear steel under pseudo carburizing condition[J].Anhui Metallurgy,2016(4):5-9.
LIU Y,WANG M Q ,SHI J,et al.Fatigue properties of two case hardening steels after carburization[J].International Journal of Fatigue,2008,31(2):292-299.
HEUER B V,LOESER K,SCHMITT G.Improved materials and enhanced fatigue resistance for gear components[C]//AGMA Technical Paper 15FTM02.In Fall Technical Meeting.American Gear Manufacturers Association.Alexandria:AGMA,2015:26-32.
OOKI C.Improving rolling contact fatigue life of bearing steels through grain refinement[J].SAE Transactions,2004,113:245-249.
MATLOCK D K,ALOGAB K A,RICHARDS M D,et al.Surface processing to improve the fatigue resistance of advanced bar steels for automotive applications[J].Materials Research,2005,8(4):453-459.
王彦彬,王毛球,黎振华,等.晶粒尺寸对表面渗碳钢疲劳极限的影响[J].钢铁研究学报,2010,22(11):23-27.
WANG Yanbin,WANG Maoqiu,LI Zhenhua,et al.Effect of grain size on fatigue limit of surface carburized steel[J].Journal of Iron and Steel Research,2010,22(11):23-27.
WISE J P,MATLOCK D K.Bending fatigue of carburized steels:a statistical analysis of process and microstructural parameters[J].SAE Transactions,2000,109:182-191.
杨延辉,王毛球,陈敬超,等.高温渗碳齿轮钢的研究进展[J].特殊钢,2013,34(1):22-24.
YANG Yanhui,WANG Maoqiu,CHEN Jingchao,et al.Research progress of high temperature carburized gear steel[J].Special Steel,2013,34(1):22-24.
ALOGAB K A,MATLOCK D K,SPEER J G,et al.The influence of niobium microalloying on austenite grain coarsening behavior of Ti-modified SAE 8620 steel[J].ISIJ International,2007,47(2):307-316.
MA L,WANG M Q,SHI J,et al.Influence of niobium microalloying on rotating bending fatigue properties of case carburized steels[J].Materials Science and Engineering:A,2008,498(1/2):258-265.
VIVAS J,CAPDEVILA C,JIMENEZ J A,et al.Effect of ausforming temperature on the microstructure of G91 steel[J].Metals,2017,7(7):236.
MATSUI K,ETO H,KAWASAKI K,et al.Increase in fatigue limit of gears by compound surface refining using vacuum carburizing,contour induction hardening and double shot peening[J].Transactions of the Japan Society of Mechanical Engineers,2002,45(2):290-297.
WU J Z,LIU H J,WEI P T,et al.Effect of shot peening coverage on hardness,residual stress and surface morphology of carburized rollers[J].Surface and Coatings Technology,2020,384(C):1-8.
LIN Q J,LIU H J,ZHU C C,et al.Investigation on the effect of shot peening coverage on the surface integrity[J].Applied Surface Science,2019,489:66-72.
ZHOU H,WEI P T,LIU H J,et al.Roles of microstructure,inclusion,and surface roughness on rolling contact fatigue of a wind turbine gear[J].Fatigue & Fracture of Engineering Materials & Structures,2020,43(7):1368-1383.
KATANI S,ZIAEI-RAD S,NOURI N,et al.Microstructure modelling of dual-phase steel using SEM micrographs and voronoi polycrystal models[J].Metallography Microstructure & Analysis,2013,2(3):156-169.
WANG L,WANG Z,ZHAO J,et al.Life prediction by ferrite-pearlite microstructural simulation of short fatigue cracks at high temperature[J].International Journal of Fatigue,2015,80:349-356.
SUN F W,MEADE E D,O′DOWD N P.Microscale modelling of the deformation of a martensitic steel using the voronoi tessellation method[J].Journal of the Mechanics and Physics of Solids,2018,113:35-55.
BEHROOZ J,SADEGHI F.A voronoi FE fatigue damage model for life scatter in rolling contacts[J].Journal of Tribology,2010,132(2):1-14.
VIJAY A,PAULSON N,SADEGHI F.A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue[J].International Journal of Fatigue,2018,106:92-102.
WALVEKAR A A,SADEGHI F.Rolling contact fatigue of case carburized steels[J].International Journal of Fatigue,2017,95(3):264-281.
WEI P T,ZHOU H,LIU H J,et al.Modeling of contact fatigue damage behavior of a wind turbine carburized gear considering its mechanical properties and microstructure gradients[J].International Journal of Mechanical Sciences,2019,156:283-296.
WU G C,LI Y F,WANG G L.Probabilistic simulation of shape instability based on the true microstructure model[J].Strength of Materials,2018,50(1):47-53.
SPANOS G,ROWENHORST D J,LEWIS A C,et al.Combining serial sectioning,EBSD analysis,and image-based finite element modeling[J].MRS Bulletin,2008,33(6):597-602.
LEWIS A C,JORDAN K A,GELTMACHER A B.Determination of critical microstructural features in an austenitic stainless steel using image-based finite element modeling[J].Metallurgical and Materials Transactions A,2008,39(5):1109-1117.
VAJRAGUPTA N,WECHSUWANMANEE P,LIAN J,et al.The modeling scheme to evaluate the influence of microstructure features on microcrack formation of DP-steel:the artificial microstructure model and its application to predict the strain hardening behavior[J].Computational Materials Science,2014,94(C):198-213.
REGENER B,KREMPASZKY C,WERNER E,et al.Modelling the micromorphology of heat treated Ti6Al4V forgings by means of spatial tessellations feasible for FEM analyses of microscale residual stresses[J].Computational Materials Science,2012,52(1):77-81.
RAABE D.Computational materials science:the simulation of materials microstructures and properties[M].Weinheim:Wiley-VCH Verlag GmbH,1998:1-379.
IWASHITA K,MURATA Y,TSUKADA Y,et al.Formation mechanism of the hierarchic structure in the lath martensite phase in steels[J].Philosophical Magazine,2011,91(35):4495-4513.
PRASANNAVENKATESAN R,PRZYBYLA P C,SALAJEGHEH N,et al.Simulated extreme value fatigue sensitivity to inclusions and pores in martensitic gear steels[J].Engineering Fracture Mechanics,2011,78(6):1140-1155.
GHASSEMI-ARMAKI H,CHEN P,BHAT S,et al.Microscale-calibrated modeling of the deformation response of low-carbon martensite[J].Acta Materialia,2013,61(10):3640-3652.
SUN F W,MEADE E D,O′DOWD N P.Microscale modelling of the deformation of a martensitic steel using the voronoi tessellation method[J].Journal of the Mechanics and Physics of Solids,2018,113:35-55.
QIN W J,GUAN C Y.An investigation of contact stresses and crack initiation in spur gears based on finite element dynamics analysis[J].International Journal of Mechanical Sciences,2014,83:96-103.
ŠRAML M,FLAŠKER J.Computational approach to contact fatigue damage initiation analysis of gear teeth flanks[J].The International Journal of Advanced Manufacturing Technology,2007,31(11/12):1066-1075.
ZHOU Y,ZHU C C,LIU H J,et al.Investigation of contact performance of case-hardened gears under plasto-elastohydrodynamic lubrication[J].Tribology Letters,2019,67(3):1-15.
WARHADPANDE A,JALALAHMADI B,SLACK T,et al.A new finite element fatigue modeling approach for life scatter in tensile steel specimens[J].International Journal of Fatigue,2009,32(4):685-697.
WEI P T,LIU H J,ZHU C C,et al.Continuous damage-based voronoi finite element analysis of contact fatigue of a wind turbine gear[J].ARCHIVE Proceedings of the Institution of Mechanical Engineers Part J:Journal of Engineering Tribology,2019,233(10):1483-1495.
GUAN J,WANG L Q,LI Y F,et al.Influence of rough surface on damage evolution and fatigue life of M50-bearing steel containing a spherical inclusion[J].International Journal of Damage Mechanics,2019,28(10):1580-1604.
GHODRATI M,AHMADIAN M,MIRZAEIFAR R.Modeling of rolling contact fatigue in rails at the microstructural level[J].Wear,2018,406:205-217.
JALALAHMADI B,SADEGHI F.A voronoi finite element study of fatigue life scatter in rolling contacts[J].Journal of Tribology,2009,131(2):1-15.
RAJE N,SADEGHI F,RATEICK R G.A statistical damage mechanics model for subsurface initiated spalling in rolling contacts[J].Journal of Tribology,2008,130(4):786-791.
CHAN K S.Roles of microstructure in fatigue crack initiation[J].International Journal of Fatigue,2009,32(9):1428-1447.
PAULSON N R,BOMIDI J A R,SADEGHI F,et al.Effects of crystal elasticity on rolling contact fatigue[J].International Journal of Fatigue,2014,61:67-75.
ZHOU H,WEI P T,LIU H J,et al.Crystal elasticity analysis of contact fatigue behavior of a wind turbine gear[J].Journal of Mechanical Science and Technology,2019,33(10):4791-4802.
ZHOU H,WEI P T,LIU H J,et al.Roles of microstructure,inclusion,and surface roughness on rolling contact fatigue of a wind turbine gear[J].Fatigue & Fracture of Engineering Materials & Structures,2020,43(7):1368-1383.
NOYEL J P,VILLE F,JACQUET P,et al.Development of a granular cohesive model for rolling contact fatigue analysis:crystal anisotropy modeling[J].Tribology Transactions,2016,59(3):469-479.
MOORE J A,FRANKEL D,PRASANNAVENKATESAN R,et al.A crystal plasticity-based study of the relationship between microstructure and ultra-high-cycle fatigue life in nickel titanium alloys[J].International Journal of Fatigue,2016,91:183-194.
CHAI G C,ZHOU N,CIUREA S,et al.Local plasticity exhaustion in a very high cycle fatigue regime[J].Scripta Materialia,2012,66(10):769-772.
BRIDIER F,MCDOWELL D L,VILLECHAISE P,et al.Crystal plasticity modeling of slip activity in Ti-6Al-4V under high cycle fatigue loading[J].International Journal of Plasticity,2008,25(6):1066-1082.
刘栋.风电转盘轴承细观微结构力学分析与ABAQUS二次开发[D].秦皇岛:燕山大学,2016:10-30.
LIU Dong.Mechanical analysis of micro structure and secondary development of ABAQUS for rotary bearing of wind turbine[D].Qinhuangdao:Yanshan University,2016:10-30.
ALLEY E S,NEU R W.Microstructure-sensitive modeling of rolling contact fatigue[J].International Journal of Fatigue,2009,32(5):841-850.
LIU H J,WANG W,ZHU C C,et al.A microstructure sensitive contact fatigue model of a carburized gear[J].Wear,2019,436/437:1-15.
WANG W,LIU H J,ZHU C C,et al.Micromechanical analysis of gear fatigue-ratcheting damage considering the phase state and inclusion[J].Tribology International,2019,136:182-195.
樊俊铃.基于能量耗散的Q235钢高周疲劳性能评估[J].机械工程学报,2018,54(6):1-9.
FAN Junling.High cycle fatigue performance evaluation of Q235 steel based on energy dissipation[J].Journal of Mechanical Engineering,2018,54(6):1-9.
KANG J H,HOSSEINKHANI B,RIVERA-D AZ-DEL-CASTILLO P E J.Rolling contact fatigue in bearings:multiscale overview[J].Materials Science and Technology,2012,28(1):44-49.
SANGID M D.The physics of fatigue crack initiation[J].International Journal of Fatigue,2013,57(12):58-72.
WARHADPANDE A,SADEGHI F,EVANS R D.Microstructural alterations in bearing steels under rolling contact fatigue part 1-historical overview[J].Tribology Transactions,2013,56(3):349-358.
MOGHADDAM S M,SADEGHI F.A review of microstructural alterations around nonmetallic inclusions in bearing steel during rolling contact fatigue[J].Tribology Transactions,2016,59(6):1142-1156.
EVANS M H.An updated review:white etching cracks (WECs) and axial cracks in wind turbine gearbox bearings[J].Materials Science and Technology,2016,32(11):1133-1169.
ZHENG X M,ZHANG Y Z,DU S M.The state-of-art of microstructural evolution of bearing materials under rolling contact fatigue[J].Materials Science and Technology,2020,36(2):131-149.
AL-TUBI S I,LONG H,ZHANG J,et al.Experimental and analytical study of gear micropitting initiation and propagation under varying loading conditions[J].Wear,2015,328/329:8-16.
American Gear Manufacturer's Association.Effect of lubrication on gear surface distres:AGMA 925-A03[S].Alexandria:AGMA,2003:22-23.
WEIBRING M,GONDECKI L,TENBERGE P.Simulation of fatigue failure on tooth flanks in consideration of pitting initiation and growth[J].Tribology International,2019,131:299-307.
RAJINIKANTH V,SONI M K,MAHATO B,et al.Study of microstructural degradation of a failed pinion gear at a cement plant[J].Engineering Failure Analysis,2018,95:117-126.
MALLIPEDDI D,NORELL M,SOSA M,et al.The effect of manufacturing method and running-in load on the surface integrity of efficiency tested ground,honed and superfinished gears[J].Tribology International,2019,131:277-287.
OILA A,BULL S J.Phase transformations associated with micropitting in rolling/sliding contacts[J].Journal of Materials Science,2005,40(18):4767-4774.
OILA A,SHAW B A,AYLOTT C J,et al.Martensite decay in micropitted gears[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2005,219(2):77-83.
CHI L.Micropitting and martensite decay in gears[D].Callaghan:School of Chemical Engineering and Advanced Materials of Newcastle University,2016:47-68.
MALLIPEDDI D,NORELL M,NAIDU V M S,et al.Micropitting and microstructural evolution during gear testing-from initial cycles to failure[J].Tribology International,2021,156:1-32.
DOMMARCO R C,KOZACZEK K J,BASTIAS P C,et al.Residual stresses and retained austenite evolution in SAE 52100 steel under non-ideal rolling contact loading[J].Wear,2004,257(11):1081-1088
OILA A,BULL S J.Assessment of the factors influencing micropitting in rolling/sliding contacts[J].Wear,2004,258(10):1510-1524.
PREDKI W,NAZIFI K,LUTZIG G.Micropitting of big gearboxes:influence of flank modification and surface roughness[J].Gear Technology,2011,28(3):42-46.
WINKELMANN L,EL-SAEED O,BELL M.The effect of superfinishing on gear micropitting[J].Gear Technology,2009(2):60-65.
赵国平,董辉立,王春明,等.斜齿轮疲劳裂纹萌生及扩展过程全寿命研究[J].摩擦学学报,2016,36(5):643-649.
ZHAO Guoping,DONG Huili,WANG Chunming,et al.Study on the whole life of fatigue crack initiation and propagation process of helical gears[J].Journal of Tribology,2016,36(5):643-649.
GLODEZ G,REN Z,FLASKER J.Surface fatigue of gear teeth flanks[J].Computers and Structures ,1997(73):475-483.
TERRIN A,DENGO C,MENEGHETTI G.Experimental analysis of contact fatigue damage in case hardened gears for off-highway axles[J].Engineering Failure Analysis,2017,76:10-26.
ROSSINO L S,BORGES D,MORETO J A,et al.Surface contact fatigue failure of a case hardened pinion shaft[J].Materials Research,2014,17(3):535-541.
GUAGLIANO M,RIVA E,GUIDETTI M.Contact fatigue failure analysis of shot-peened gears[J].Engineering Failure Analysis,2002,9(2):147-158.
HANSEN K T,F STER S,NATARAJAN A,et al.Analysis of bearing steel exposed to rolling contact fatigue[J].IOP Conference Series:Materials Science and Engineering,2017,219(1):1-8.
KRAMER P C.An investigation of rolling-sliding contact fatigue damage of carburized gear steels[D].Golden:Colorado School of Mines.Metallurgical and Materials Engineering,2014:16-39.
LI S X,SU Y S,SHU X D,et al.Microstructural evolution in bearing steel under rolling contact fatigue[J].Wear,2017,380:146-153.
ZHOU Y,PENG J F,LUO Z P,et al.Phase and microstructural evolution in white etching layer of a pearlitic steel during rolling-sliding friction[J].Wear,2016,362:8-17.
ZHAO F Q,DING X F,FAN X Y,et al.Contact fatigue failure analysis of helical gears with non-entire tooth meshing tests[J].Metals Open Access Metallurgy Journal,2018,8(9):1-20.
CONRADO E,FOLETTI S,GORLA C,et al.GSD-10 a multiaxial fatigue approach for the calculation of the pitting strength of case hardened gears (gear strength and durability,including gear materials and heat treatment techniques)[J].The Proceedings of the JSME international conference on motion and power transmissions,2009:356-362.
OTERO E J,OCHOA D L G E,TANAEEO C E,et al.Influence of the rheological behaviour of the lubricant on the appearance of pitting in elastohydrodynamic regime[J].Fatigue & Fracture of Engineering Materials & Structures,2012,35(11):1047-1057.
高攀.直齿圆柱齿轮疲劳点蚀失效机理及实验研究[D].大连:大连理工大学,2015:37-66.
GAO Pan.Fatigue pitting failure mechanism and experimental study of spur gear[D].Dalian:Dalian University of Technology,2015:37-66.
BOIADJIEV I,WITZIG J,TOBIE T,et al.Tooth flank fracture-basic principles and calculation model for a sub surface initiated fatigue failure mode of case hardened gears[C]//International Gear Conference,August 26-28,2014,Lyon,France Bay Area.Sawston:Woodhead Publishing,2014:670-680.
LIU W.The failure analysis of the repeat geartooth breakage in a 40 MW steam turbine load gearbox and the butterfly in the carburized case[J].Engineering Failure Analysis,2014,46:9-17.
刘怀举,刘鹤立,朱才朝,等.轮齿齿面断裂失效研究综述[J].北京工业大学学报,2018,44(7):961-968.
LIU Huaiju,LIU Heli,ZHU Caichao,et al.Review on fracture failure of gear tooth surface[J].Journal of Beijing University of Technology,2018,44(7):961-968.
宗国庆,董霞,高彤,等.双联齿轮断裂分析[J].化学分析计量,2011,20(S1):99-101.
ZONG Guoqing,DONG Xia,GAO Tong,et al.Fracture analysis of double gear[J].Chemical Metrology,2011,20(S1):99-101.
VULLO V.Tooth flank breakage load carrying capacity of spur and helical gears[J].Analysis of Load Carrying Capacity and Strength Design,2020,11:539-583.
宋金辉,程小利,黄敏,等.风电齿轮箱高速中间轴失效原因分析[J].金属热处理,2019,44(S1):89-92.
SONG Jinhui,CHENG Xiaoli,HUANG Min,et al.Failure analysis of high speed intermediate shaft of wind turbine gearbox[J].Metal Heat Treatment,2019,44(S1):89-92.
WITZIG J.Flankenbruch-eine grenze der zahnradtragfähigkeit in der werkstofftiefe[D].Munich:Technical University of Munich,2012:21-47.
HEIN M,TOBIE T,STAHL K.Parameter study on the calculated risk of tooth flank fracture of case hardened gears[J].Journal of Advanced Mechanical Design Systems & Manufacturing,2017,11(6):0074.
ZHANG B Y,LIU H J,ZHU C C,et al.Numerical simulation of competing mechanism between pitting and micro-pitting of a wind turbine gear considering surface roughness[J].Engineering Failure Analysis,2019,104:1-12.
MORALES-ESPEJEL E G,RYCERZ P,KADIRIC A.Prediction of micropitting damage in gear teeth contacts considering the concurrent effects of surface fatigue and mild wear[J].Wear,2018,398:99-115.
KISSSOFT AG,BEERMANN S,KISSLING U.Tooth flank fracture-a critical failure mode influence of macro and micro geometry[C]//KISSsoft User Conference India 2015.Pune:KISSsoft AG,2015:1-14.
刘鹤立.齿轮接触疲劳—磨损失效竞争机制研究[D].重庆:重庆大学,2019:1-8.
LIU Heli.Study on the competition mechanism of gear contact fatigue wear failure[D].Chongqing:Chongqing University,2019:1-8.
ETERASHVILI T,DZIGRASHVILI T,VARDOSANIDZE M.SEM study of the influence of microstructure on low cycle fatigue crack growth in martensitic steel I[J].Key Engineering Materials,2018,4700:96-100.
0
浏览量
9
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构