1.国网上海市电力公司长兴供电公司, 上海 201913
2.上海电机学院 电气学院, 上海 201306
秦辞海(1977— ),男,上海人,硕士,高级工程师;研究方向为电气设备状态监测。
丁云飞(1976— ),女,湖北荆门人,博士,特聘教授;研究方向为人工智能、机器学习、故障诊断。
扫 描 看 全 文
秦辞海,赵睿智,王月强等.基于LSGAN和VMD-MPE-KELM的风机齿轮箱故障诊断[J].机械传动,2021,45(11):153-160.
Qin Cihai,Zhao Ruizhi,Wang Yueqiang,et al.Fault Diagnosis of Wind Turbine Gearbox based on LSGAN and VMD-MPE-KELM[J].Journal of Mechanical Transmission,2021,45(11):153-160.
秦辞海,赵睿智,王月强等.基于LSGAN和VMD-MPE-KELM的风机齿轮箱故障诊断[J].机械传动,2021,45(11):153-160. DOI: 10.16578/j.issn.1004.2539.2021.11.024.
Qin Cihai,Zhao Ruizhi,Wang Yueqiang,et al.Fault Diagnosis of Wind Turbine Gearbox based on LSGAN and VMD-MPE-KELM[J].Journal of Mechanical Transmission,2021,45(11):153-160. DOI: 10.16578/j.issn.1004.2539.2021.11.024.
在实际工况中,风机齿轮箱的故障样本多呈现不均衡特征。为克服样本不均衡性给诊断效果带来的影响,提出了一种基于LSGAN(最小二乘对抗网络)和VMD-MPE-KELM的风机齿轮箱故障诊断方法。首先,采用LSGAN算法用于少数类故障样本的生成处理,将具备原始样本特征的生成数据扩充样本集使其分布均衡,采用VMD方法分解样本集中各类故障的振动信号,计算各模态分量的MPE多尺度排列熵值以提取信号特征;再通过KPCA方法降维处理,获得故障样本的特征向量,将其代入KELM模型诊断。实验表明,LSGAN算法克服了GAN在生成故障样本中梯度消失、训练不稳定和数据质量差等问题;VMD-MPE-KPCA方法可有效提取故障特征。该方法有效地提高了非平衡齿轮箱故障样本的诊断精度。
In the actual working condition,the fault samples of wind turbine gearbox are mostly unbalanced. In order to overcome the influence of sample imbalance on the diagnosis effect,a fault diagnosis method of wind turbine gearbox based on LSGAN and VMD-MPE-KELM is proposed. Firstly,LSGAN algorithm is used to generate and process a few kinds of fault samples. The generated data with original sample characteristics is expanded to make its distribution balanced. The VMD method is used to decompose the vibration signals of all kinds of faults in the sample set,and the MPE value of each modal component is calculated to extract the signal features. Then,KPCA method is used to reduce the dimension to obtain the feature vector of fault samples,which is substituted into KELM model for diagnosis. The experimental results show that LSGAN algorithm overcomes the problems of GAN gradient disappearance,unstable training and poor data quality in generating fault samples. The VMD-MPE-KPCA method can effectively extract fault features. This method effectively improves the diagnosis accuracy of unbalanced gearbox fault samples.
变分模态分解最小二乘对抗网络齿轮箱多尺度排列熵故障诊断
Variational mode decompositionLSGANGearboxMPEFault diagnosis
郑小霞,钱轶群,王帅,等.改进灰狼优化模糊核聚类在风电齿轮箱故障诊断中的应用[J].机械传动,2020,44(6):142-148.
ZHENG Xiaoxia,QIAN Yiqun,WANG Shuai,et al.Application of improved grey wolf optimization KFCM algorithm in fault diagnosis of wind turbine gearbox[J].Journal of Mechanical Transmission,2020,44(6):142-148.
GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Conference on Neural Information Processing Systems,Montreal,Canada,2014:2672-2680.
DONG J,YIN R,SUN X,et al.Inpainting of remote sensing SST images with deep convolutional generative adversarial network[J].IEEE Geoscience and Remote Sensing Letters,2018,16(2):173-177.
ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein generative adversarial networks[C]//International Conference on Machine Learning,Sydney,Australia,2017:214-223.
GEORGIOS D,FERNANDO B.Effective data generation for imbalanced learning using conditional generative adversarial networks[J].Expert Systems with Applications,2018,91:464-471.
WANG C G,CAO Y,ZHANG S,et al.A reconstruction method for missing data in power system measurement based on LSGAN[J].Frontiers in Energy Research,2021:9.
卢树峰,李志新,黄奇峰,等.新型信号处理方法VMD在电能计量故障识别中的应用[J].电测与仪表,2020,57(10):71-75.
LU Shufeng,LI Zhixin,HUANG Qifeng,et al.Application of new signal processing method VMD in fault recognition of power metering[J].Electrical Measurement & Instrumentation,2020,57(10):71-75.
李梅红,连威.基于变分模态分解和符号熵的齿轮故障诊断方法[J].机械传动,2019,43(3):161-165.
LI Meihong,LIAN Wei.Gear fault diagnosis method based on variational mode decomposition and symbol entropy[J].Journal of Mechanical Transmission, 2019,43(3):161-165.
丁承君,冯玉伯,王曼娜.基于变分模态分解与深度卷积神经网络的滚动轴承故障诊断[J].振动与冲击,2021,40(2):287-296.
DING Chengjun,FENG Yubo,WANG Manna.Rolling bearing fault diagnosis using variational mode decomposition and deep convolutional neural network[J].Journal of Vibration and Shock,2021,40(2):287-296.
GENG D S,YANG D G,CAI M,et al.A novel microwave treatment for sleep disorders and classification of sleep stages using multi-scale entropy[J].Entropy,2020,22(3):347.
王泽,王红军.基于多尺度排列熵的滚动轴承故障特征提取[J].组合机床与自动化加工技术,2020(8):30-34.
WANG Ze,WANG Hongjun.Fault feature extraction of rolling bearings based on multi-scale entropy[J].Modular Machine Tool & Automatic Manufacturing Technique,2020(8):30-34.
王望望,邓林峰,赵荣珍,等.基于QPSO-MPE的滚动轴承故障识别方法[J].振动.测试与诊断,2021,41(1):62-68.
WANG Wangwang,DENG Linfeng,ZHAO Rongzhen,et al.Rolling bearing fault identification based on quantum-behaved particle swarm optimization and multi-scale permutation entropy[J].Journal of Vibration,Measurement & Diagnosis,2021,41(1):62-68.
CHEN L,FANG Q,CHEN Y.Intelligent clothing interaction design and evaluation system based on DCGAN image generation module and kansei engineering[J].Journal of Physics:Conference Series,2021,1790(1):012025.
张宁,魏秀业,徐晋宏.基于LMD样本熵与ELM的行星齿轮箱故障诊断[J].机械传动,2020,44(4):152-157.
ZHANG Ning,WEI Xiuye,XU Jinhong.Planetary gearbox fault diagnosis based on LMD sample entropy and ELM[J].Journal of Mechanical Transmission,2020,44(4):152-157.
WANG H,PENG M J,YU Y,et al.Fault identification and diagnosis based on KPCA and similarity clustering for nuclear power plants[J].Annals of Nuclear Energy,2021,150(1):107786.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构