1.重庆大学 机械传动国家重点实验室, 重庆 400030
张秀华(1995— ),男,重庆开州人,硕士研究生;主要研究方向为基于数据驱动的齿轮接触疲劳寿命预测。
刘怀举(1986— ),男,山东曲阜人,副教授,博士生导师;主要研究方向为机械传动智能设计与抗疲劳制造研究。
扫 描 看 全 文
张秀华,刘怀举,朱才朝等.基于数据驱动的零部件疲劳寿命预测研究现状与发展趋势[J].机械传动,2021,45(10):1-14.
Zhang Xiuhua,Liu Huaiju,Zhu Caichao,et al.Current Situation and Developing Trend of Fatigue Life Prediction of Components based on Data-driven[J].Journal of Mechanical Transmission,2021,45(10):1-14.
张秀华,刘怀举,朱才朝等.基于数据驱动的零部件疲劳寿命预测研究现状与发展趋势[J].机械传动,2021,45(10):1-14. DOI: 10.16578/j.issn.1004.2539.2021.10.001.
Zhang Xiuhua,Liu Huaiju,Zhu Caichao,et al.Current Situation and Developing Trend of Fatigue Life Prediction of Components based on Data-driven[J].Journal of Mechanical Transmission,2021,45(10):1-14. DOI: 10.16578/j.issn.1004.2539.2021.10.001.
随着风电、高铁、航空等重大装备向着高可靠性、长寿命、智能化的方向发展,对齿轮、轴承等基础零部件的寿命提出更高的要求,也迫切需要更为科学、高效的疲劳寿命预测方法。机械零部件的寿命预测方法可分为基于物理失效模型、基于数据驱动模型和基于融合模型3种。随着零部件寿命预测研究向高精度、高效率发展,基于物理模型的寿命预测方法由于其模型复杂、耗时、不具有普适性等缺陷难以满足现代需求。基于数据驱动技术由于其具有无需知道其具体失效机理、预测结果准确等优点,且伴随机器学习、深度学习等技术的迅速发展,使得其成为零部件疲劳寿命预测研究的热点。鉴于此,详细阐述了基于数据驱动的机械零部件疲劳寿命预测方法,并详细介绍了神经网络、支持向量机、随机森林、深度学习等数据驱动方法在零部件寿命预测中的应用,总结了每种方法的特点,探讨了基于数据驱动的零部件寿命预测方法的发展趋势,并给出了基于GA-BP神经网络齿轮接触疲劳寿命预测研究的案例。
With the development of wind turbine,high-speed railway,aero-engine and other large equipment towards the direction of high reliability,long life and intelligence,it has put forward higher requirements for the life of basic components such as gears and bearings. It is urgent to use more scientific and efficient fatigue life prediction method. The life prediction methods of mechanical components can be divided into physical failure model,data-driven model and fusion model(physical failure and data-driven model fusion) three types. With the development of components life prediction research towards high precision and high efficiency,physical model is difficult to meet modern needs due to its complexity,time-consuming and non-universal disadvantages. With the rapid development of machine learning,deep learning and other technologies,data-driven model has become a hot topic in the research of components fatigue life prediction of due to the advantages of no need to know detailed failure mechanism and accurate prediction results. In view of this,the fatigue life prediction method of components based on data-driven is described. The application of these methods in the life prediction of components is introduced,including neural network,support vector machine,random forest and deep learning,and the characteristics of each method are summarized,and the developing trend of the life prediction method of components based on data-driven is discussed. And a case study of gear contact fatigue life prediction based on GA-BP neural network is presented.
数据驱动零部件寿命预测机器学习预测精度
Data-drivenComponentsLife predictionMachine learningPrediction accuracy
陈润松,姜永升,李忙,等.输出齿轮轴断齿分析[J].金属加工(热加工),2016(19):14-16.
CHEN Runsong,JIANG Yongsheng,LI Mang,et al.Analysis of broken teeth of output gear shaft[J].MW Metal Forming,2016(19):14-16.
姚卫星.结构疲劳寿命分析[M].北京:科学出版社,2019:174-216.
YAO Weixing.Fatigue life estimation of structures[M].Beijing:Science Press,2019:174-216.
IOANNIDES E,HARRIS T A.A new fatigue life model for rolling bearings[J].Journal of Tribology,1985,107(3):367-377.
LIAO L,KÖTTIG F.Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems,and an application to battery life prediction[J].IEEE Transactions on Reliability,2014,63(1):191-207.
MOSALLAM A,MEDJAHER K,ZERHOUNI N.Data-driven prognostic method based on bayesian approaches for direct remaining useful life prediction[J].Journal of Intelligent Manufacturing,2016,27(5):1037-1048.
BENKEDJOUH T,MEDJAHER K,ZERHOUNI N,et al.Remaining useful life estimation based on nonlinear feature reduction and support vector regression[J].Engineering Applications of Artificial Intelligence,2013,26(7):1751-1760.
HU C,YOUN B D,WANG P,et al.Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life[J].Reliability Engineering and System Safety,2012,103:120-135.
SOCIE D F.Fatigue-life prediction using local stress-strain concepts[J].Experimental Mechanics,1977,17(2):50-56.
YAO W X.Stress field intensity approach for predicting fatigue life[J].International Journal of Fatigue,1993,15(3):243-246.
SOCIE D F.Multiaxial fatigue damage models[J].Journal of Engineering Materials and Technology,1987,109(4):293-298.
PAO Y H.A fracture mechanics approach to thermal fatigue life prediction of solder joints[J].IEEE Transactions on Components,Hybrids,and Manufacturing Technology,1992,15(4):559-570.
WANG W,LIU H J,ZHU C C,et al.Evaluation of contact fatigue life of a wind turbine carburized gear considering gradients of mechanical properties[J].International Journal of Damage Mechanics,2019,28(8):1170-1190.
LIU H L,LIU H J,ZHU C C,et al.Evaluation of contact fatigue life of a wind turbine gear pair considering residual stress[J].Journal of Tribology,2018,140(4):041102.
ZHANG B Y,LIU H J,ZHU C C,et al.Numerical simulation of competing mechanism between pitting and micro-pitting of a wind turbine gear considering surface roughness[J].Engineering Failure Analysis,2019,104:1-12.
WANG W,LIU H J,ZHU C C,et al.Micromechanical analysis of gear fatigue-ratcheting damage considering the phase state and inclusion[J].Tribology International,2019,136:182-195.
ZHOU Y,ZHU C C,GOULD B,et al.The effect of contact severity on micropitting:simulation and experiments[J].Tribology International,2019,138:463-472.
张清亮.基于奇异值分解与深度递归神经网络的齿轮剩余寿命预测方法研究[D].重庆:重庆大学,2018:1.
ZHANG Qingliang.Study on gear residual life prediction method based on singular value decomposition and deep recurrent neural network[D].Chongqing:Chongqing University,2018:1.
HAHN H T.Fatigue behavior and life prediction of composite laminates[C]//Composite Materials:Testing and Design(Fifth Conference),March 20-22,1978,New Orleans,La.West Conshohocken:ASTM International,1979:383-417.
VENKATESH V,RACK H J.A neural network approach to elevated temperature creep–fatigue life prediction[J].International Journal of Fatigue,1999,21(3):225-234.
彭宇,刘大同.数据驱动故障预测和健康管理综述[J].仪器仪表学报,2014,35(3):481-495.
PENG Yu,LIU Datong.Data-driven prognostics and health management:A review of recent advances[J].Chinese Journal of Scientific Instrument,2014,35(3):481-495.
SI X S,WANG W,HU C H,et al.Remaining useful life estimation-a review on the statistical data driven approaches[J].European Journal of Operational Research,2011,213(1):1-14.
LI Y,LIU K,FOLEY A M,et al.Data-driven health estimation and lifetime prediction of lithium-ion batteries:a review[J].Renewable and Sustainable Energy Reviews,2019,113:109-254.
向蓉美,王青华.统计学系列教材 统计学[M].2版.成都:西南财经大学出版社,2013:4.
XIANG Rongmei,WANG Qinghua.Statistics[M].2nd ed.Chengdu:Southwestern University of Finance and Economics Press,2013:4.
赵广社,吴思思,荣海军.多源统计数据驱动的航空发动机剩余寿命预测方法[J].西安交通大学学报,2017,51(11):150-155.
ZHAO Guangshe,WU Sisi,RONG Haijun.A multi-source statistics data-driven method for remaining useful life prediction of aircraft engine[J].Journal of Xi'an Jiaotong University,2017,51(11):150-155.
HASHIN Z.Statistical cumulative damage theory for fatigue life prediction[J].Journal of Applied Mechanics,1983,50(3):571-579.
WANG W B,CARR M.A stochastic filtering based data driven approach for residual life prediction and condition based maintenance decision making support[C]//2010 Prognostics and Health Management Conference,Jan 12-14,2010,Macao,China.Piscataway:IEEE,2010:1-10.
LUO J,BOWEN P.A probabilistic methodology for fatigue life prediction[J].Acta Materialia,2003,51(12):3537-3550.
LASSEN T,DARCIS P,RECHO N.Fatigue Behavior of Welded Joints Part 1-Statistical Methods for Fatigue Life Prediction[J].Welding Journal,2005,84(12):183-187.
BARRADAS-BERGLIND J D J,SOLTANI M,WISNIEWSKI R.Fatigue damage estimation and data-based control for wind turbines[J].IET Control Theory and Applications,2015,9(7):1042-1050.
DURODOLA J F,LI N,RAMACHANDRA S,et al.A pattern recognition artificial neural network method for random fatigue loading life prediction[J].International Journal of Fatigue,2017,99:55-67.
赵申坤,姜潮,龙湘云.一种基于数据驱动和贝叶斯理论的机械系统剩余寿命预测方法[J].机械工程学报,2018,54(12):115-124.
ZHAO Shenkun,JIANG Chao,LONG Xiangyun.Remaining useful life estimation of mechanical systems based on the data-driven method and bayesian[J].Journal of Mechanical Engineering,2018,54(12):115-124.
周志华.机器学习[M].北京:清华大学出版社,2016:10-14.
ZHOU Zhihua.Machine learning[M].Beijing:Tsinghua University Press,2016:10-14.
SHAO Y,NEZU K.Prognosis of remaining bearing life using neural networks[J].Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering,2000,214(3):217-230.
GEBRAEEL N,LAWLEY M,LIU R,et al.Residual life predictions from vibration-based degradation signals:a neural network approach[J].IEEE Transactions on Industrial Electronics,2004,51(3):694-700.
HUANG R Q,XI L F,LI X L,et al.Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods[J].Mechanical Systems and Signal Processing,2005,21(1):193-207.
MAHAMAD A K,SAON S,HIYAMA T.Predicting remaining useful life of rotating machinery based artificial neural network[J].Computers and Mathematics with Applications,2010,60(4):1078-1087.
CHEN X H,LIU M.Gear remaining useful life prediction based on grey neural network[C]//Proceedings of the 14th IFToMM World Congress,October 25-30,2015,Taipei,Taiwan.Fredericton:IFToMM,2015:248-252.
TIAN Z G,ZUO M J.Health condition prediction of gears using a recurrent neural network approach[J].IEEE Transactions on Reliability,2010,59(4):700-705.
王婉娜,石慧,曾建潮.基于模糊神经网络的齿轮剩余寿命预测模型研究[J].太原科技大学学报,2018,39(6):424-430.
WANG Wanna,SHI Hui,ZENG Jianchao.A Model for remaining useful life prediction for gear based on adaptive neuro-fuzzy inference system[J].Journal of Taiyuan University of Science and Technology,2018,39(6):424-430.
丁怡,何卫平,张维,等.基于BP神经网络的刀具寿命预测模型[J].航空制造技术,2010(8):93-96.
DING Yi,HE Weiping,ZHANG Wei,et al.Tool life prediction model based on BP neural network[J].Aeronautical Manufacturing Technology,2010(8):93-96.
李战芬,韩意,刘彦臣,等.基于神经网络遗传算法优化的曲轴疲劳寿命预测[J].中北大学学报(自然科学版),2016,37(4):401-406.
LI Zhanfen,HAN Yi,LIU Yanchen,et al.Crankshaft fatigue life prediction based on neural network[J].Journal of North University of China(Natural Science Edition),2016,37(4):401-406.
ABDALLA J A,HAWILEH R.Modeling and simulation of low-cycle fatigue life of steel reinforcing bars using artificial neural network[J].Journal of the Franklin Institute,2010,348(7):1393-1403.
何宇健,张启玉,刘刚.Python与机器学习实战决策树、集成学习、支持向量机与神经网络算法详解及编程实现[M].北京:电子工业出版社,2017:180-187.
HE Yujian,ZHANG Qiyu,LIU Gang.Python and machine learning practical decision tree,integrated learning,support vector machine and neural network algorithm explanation and programming implementation[M].Beijing:Publishing House of Electronics Industry,2017:180-187.
马海龙.基于主元特征融合和SVM的轴承剩余寿命预测[J].工矿自动化,2019,45(8):74-78.
MA Hailong.Bearing residual life prediction based on principal component feature fusion and SVM[J].Industry and Mine Automation,2019,45(8):74-78.
董绍江.基于优化支持向量机的空间滚动轴承寿命预测方法研究[D].重庆:重庆大学,2012:61-92.
DONG Shaojiang.Research on space bearing life prediction method based on optimized support vector machine[D].Chongqing:Chongqing University,2012:61-92.
DONG S,LUO T.Bearing degradation process prediction based on the PCA and optimized LS-SVM model[J].Measurement,2013,46(9):3143-3152.
张尧.基于LS-SVM的轴承故障趋势预测方法研究[D].北京:北京化工大学,2018:13-70.
ZHANG Yao.Research on the prediction of bearing performance degradation based on LS-SVM[D].Beijing:Beijing University of Chemical Technology,2018:13-70.
SUN C,ZHANG Z,HE Z.Research on bearing life prediction based on support vector machine and its application[J].Journal of Physics:Conference Series,2011,305(1):012028.
者娜,杨剑锋,刘文彬,等.KPCA和改进SVM在滚动轴承剩余寿命预测中的应用研究[J].机械设计与制造,2019(11):1-4.
ZHE Na,YANG Jianfeng,LIU Wenbin,et al.Research on application of KPCA and improved SVM in residual life prediction of rolling bearings[J].Machinery Design and Manufacture,2019(11):1-4.
MA Y Q,WANG X P,AN L.Fatigue life prediction of ductile iron based on DE-SVM algorithm[J].Physics Procedia,2012,33:1309-1315.
于震梁,孙志礼,曹汝男,等.基于支持向量机和卡尔曼滤波的机械零件剩余寿命预测模型研究[J].兵工学报,2018,39(5):991-997.
YU Zhenliang,SUN Zhili,CAO Ru'nan,et al.Research on remaining useful life predictive model of machine parts based on SVM and kalman filter[J].Acta Armamentarii,2018,39(5):991-997.
ORDÓÑEZ C,LASHERAS F S,ROCA-PARDIÑAS J,et al.A hybrid ARIMA-SVM model for the study of the remaining useful life of aircraft engines[J].Journal of Computational and Applied Mathematics,2019,346:184-191.
加文•海克.scikit-learn机器学习[M].北京:人民邮电出版社,2019:121-128.
GAVIN Hackeling.Mastering Machine Learning with scikit-learn Second Edition[M].Beijing:Posts & Telecom Press,2019:121-128.
李欣海.随机森林模型在分类与回归分析中的应用[J].应用昆虫学报,2013,50(4):1190-1197.
LI Xinhai.Using “random forest” for classification and regression[J].Chinese Journal of Applied Entomology,2013,50(4):1190-1197.
PATIL S,PATIL A,HANDIKHERKAR V,et al.Remaining useful life(RUL)prediction of rolling element bearing using random forest and gradient boosting technique[C]//ASME International Mechanical Engineering Congress and Exposition,November 9-15,2018,Pittsburgh,USA.New York:ASME,2019:87623.
谢晓龙.航空发动机性能评价与衰退预测方法研究[D].哈尔滨:哈尔滨工业大学,2016:46-119.
XIE Xiaolong.Research on performance assessment and degradation of aeroengine[D].Harbin:Harbin Institute of Technology,2016:46-119.
赵帅.基于数据驱动的数控机床关键功能部件健康评估[D].上海:上海交通大学,2018:51-75.
ZHAO Shuai.Data-driven based health assessment methodology for key components of CNC machine tools[D].Shanghai:Shanghai Jiao Tong University,2018:51-75.
LIU Q,SHI W,CHEN Z.Rubber fatigue life prediction using a random forest method and nonlinear cumulative fatigue damage model[J].Journal of Applied Polymer Science,2020,137(14):48519.
WU D,JENNINGS C,TERPENNY J,et al.A comparative study on machine learning algorithms for smart manufacturing:tool wear prediction using random forests[J].Journal of Manufacturing Science and Engineering,2017,139(7):071018.
来晨阳,郭迎清,于华锋.基于RF-SVR的燃油计量装置性能衰退检测和剩余寿命估计方法[J].航空动力学报,2019,34(7):1624-1632.
LAI Chenyang,GUO Yingqing,YU Huafeng.Fuel metering unit performance degradation detection and remaining useful life estimation method based on RF-SVR[J].Journal of Aerospace Power,2019,34(7):1624-1632.
HINTON G E,OSINDERO S,TEH Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554.
ZHAO R,YAN R,CHEN Z,et al.Deep learning and its applications to machine health monitoring[J].Mechanical Systems and Signal Processing,2019,115(15):213-237.
BABU G S,ZHAO P L,LI X L,et al.Deep convolutional neural network based regression approach for estimation of remaining useful life[C]//International Conference on Database Systems for Advanced Applications,April 16-19,Dallas,USA.Switzerland:Springer,Cham,2016:214-228.
REN L,SUN Y,WANG H,et al.Prediction of bearing remaining useful life with deep convolution neural network[J].IEEE Access,2018,6:13041-13049.
YANG B,LIU R,ZIO E.Remaining useful life prediction based on a double-convolutional neural network architecture[J].IEEE Transactions on Industrial Electronics,2019,66(12):9521-9530.
王奇斌,孔宪光,马洪波,等.基于改进的二维CNN模型的滚动轴承剩余寿命预测方法:CN109543905A[P].2019-03-29.
WANG Qibin,KONG Xianguang,Ma Hongbo,et al.Residual life prediction method of rolling bearing based on improved 2D CNN model:CN109543905A[P].2019-03-29.
郭丽丽,丁世飞.深度学习研究进展[J].计算机科学,2015,42(5):28-33.
GUO Lili,DING Shifei.Research progress on deep learning[J].Computer Science,2015,42(5):28-33.
DEUTSCH J,HE D.Using deep learning based approaches for bearing remaining useful life prediction[C]//Annual conference of the prognostics and health management society,October 3-6,2016,Denver Embassy Suites Downtown Conference Center,Denver,Colorado.Kerman:IJPHM,2016:1-7.
DEUTSCH J,HE D.Using deep learning-based approach to predict remaining useful life of rotating components[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2017,48(1):11-20.
PAN Y,HONG R,CHEN J,et al.A hybrid DBN-SOM-PF-based prognostic approach of remaining useful life for wind turbine gearbox[J].Renewable Energy,2020,152:138-154.
ZHAO G,ZHANG G,LIU Y,et al.Lithium-ion battery remaining useful life prediction with deep belief network and relevance vector machine[C]//2017 IEEE International Conference on Prognostics and Health Management,June 19-21,2017,Dallas,TX,USA.New York:IEEE,2017:7-13.
DEUTSCH J,HE M,HE D.Remaining useful life prediction of hybrid ceramic bearings using an integrated deep learning and particle filter approach[J].Applied Sciences,2017,7(7):649.
牛乾.机械旋转部件的性能退化及其寿命预测方法研究[D].杭州:浙江大学,2018:77-93.
NIU Qian.Study on performance degeradation and life prediction of mechanical rotary components[D].Hangzhou:Zhejiang University,2018:77-93.
LIAO L,KÖTTIG F.A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction[J].Applied Soft Computing,2016,44:191-199.
ZHAO F,TIAN Z,ZENG Y.Uncertainty quantification in gear remaining useful life prediction through an integrated prognostics method[J].IEEE Transactions on Reliability,2013,62(1):146-159.
CHENG Z.A hybrid prognostics approach to estimate the residual useful life of a planetary gearbox with a local defect[J].Journal of Vibroengineering,2015,17(2):682-694.
杨思.数据—模型融合驱动的地铁车轮磨耗预测分析[D].北京:北京建筑大学,2019:38-44.
YANG Si.Prediction of metro wheel wear based on integrated data-model-driven approach[D].Beijing:Beijing University of Civil Engineering and Architecture,2019:38-44.
SAWADA Y,KOZUKA K.Transfer learning method using multi-prediction deep Boltzmann machines for a small scale dataset[C]//2015 14th IAPR International Conference on Machine Vision Applications(MVA),May 18-22,2015,Tokyo,Japan.New York:IEEE,2015:110-113.
FENG S,ZHOU H,DONG H.Using deep neural network with small dataset to predict material defects[J].Materials and Design,2019,162(15):300-310.
董韵佳.基于动力学仿真和迁移学习的滚动轴承故障诊断方法研究[D].哈尔滨:哈尔滨工业大学,2019:24-63.
DONG Yunjia.Investigation of dynamic simulation and transfer learning based fault diagnosis method for rolling element bearings[D].Harbin:Harbin Institute of Technology,2019:24-63.
ZHOU R,XING Z,WANG H,et al.Prediction of contact fatigue life of AT40 ceramic coating based on neural network[J].Anti-Corrosion Methods and Materials,2020,67(1):83-100.
裴洪,胡昌华,司小胜,等.基于机器学习的设备剩余寿命预测方法综述[J].机械工程学报,2019,55(8):1-13.
PEI Hong,HU Changhua,SI Xiaosheng,et al.Review of machine learning based remaining useful life prediction methods for equipment[J].Journal of Mechanical Engineering,2019,55(8):1-13.
赵帅.基于数据驱动的设备剩余寿命预测关键技术研究[D].西安:西北工业大学,2018:33-54.
ZHAO Shuai.Research on key technologies for data-driven methods of remaining useful life prediction of equipment[D].Xi'an:Northwestern Polytechnical University,2018:33-54.
杨源,曹彤,刘达.基于遗传算法优化神经网络的机器人臂重力补偿研究[J].机械传动,2017,41(2):37-40.
YANG Yuan,CAO Tong,LIU Da.Research of the robot arm gravity compensation based on the genetic algorithm for optimization of neural network[J].Journal of Mechanical Transmission,2017,41(2):37-40.
梁宏利.20MnCr5渗碳齿轮接触疲劳试验研究[D].重庆:重庆大学,2013:23-44.
LIANG Hongli.The study of contact fatigue test of 20MnCr5 carburized gear[D].Chongqing:Chongqing University,2013:23-44.
武志斐,王铁,张瑞亮.18Cr2Ni4WA齿轮接触疲劳特性试验研究[J].兵工学报,2010,31(5):598-602.
WU Zhifei,WANG Tie,ZHANG Ruiliang.Experimental study of contact fatigue property for 18Cr2Ni4WA gears[J].Acta Armamentarii,2010,31(5):598-602.
ZHANG Q,ZHANG J,WU C H,et al.The evaluation of contact fatigue strength for 20MnCr5 carburized gear[J].International Journal of Precision Engineering and Manufacturing,2014,15(1):117-121.
MANN I S.Contact fatigue evaluation of super honed spur gears made of AISI 4118 alloy steel[D].Columbus:The Ohio State University,2019:12-74.
史若男,张瑞亮,王铁,等.感应淬火齿轮接触疲劳强度试验研究[J].机械传动,2014,38(11):18-21.
SHI Ruonan,ZHANG Ruiliang,WANG Tie,et al.Experimental study of contact fatigue strength for induction hardening gear[J].Journal of Mechanical Transmission,2014,38(11):18-21.
KOENIG J,KOLLER P,TOBIE T,et al.Influence of additional surface finishing to the material properties and the flank load carrying capacity of case-hardened gears with grinding burn[J].Journal of Advanced Mechanical Design,Systems,and Manufacturing,2017,11(6):0075.
KLEIN M A.An experimental investigation of materials and surface treatments on gear contact fatigue life[D].Columbus:The Ohio State University,2009:8-54.
薛志宏,陈营利,胡朝阳,等.17CrNiMo6渗碳淬火齿轮接触疲劳特性试验研究[J].舰船科学技术,2010,32(8):89-91.
XUE Zhihong,CHEN Yingli,HU Zhaoyang,et al.Research on contact fatigue characteristics of 17CrNiMo6 carburized-quenched gears[J].Ship Science and Technology,2010,32(8):89-91.
李添翼,武志斐,王铁.三参数威布尔分布的齿轮接触疲劳寿命分析[J].机械设计与制造,2017(9):27-29.
LI Tianyi,WU Zhifei,WANG Tie.Analysis of gear contact fatigue life based on 3-parameter weibull distribution[J].Machinery Design and Manufacture,2017(9):27-29.
谢宏伟,陶忠,周晓光,等.基于BP神经网络的钢丝绳精密传动误差预测[J].机械传动,2017,41(9):130-134.
XIE Hongwei,TAO Zhong,ZHOU Xiaoguang,et al.Prediction of transmission error of cable precision drive based on BP neural network[J].Journal of Mechanical Transmission,2017,41(9):130-134.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构