1.桂林航天工业学院 能源与建筑环境学院, 广西 桂林 541004
李云龙(1980─ ),男,河南洛阳人,硕士,工程师,主要从事工程力学、有限元理论研究。
扫 描 看 全 文
李云龙.滚动轴承-转子系统有限元离散建模非线性动力学数值分析[J].机械传动,2021,45(06):38-45.
Li Yunlong.Nonlinear Dynamics Numerical Analysis of Rolling Bearing-rotor System based on Finite Element Modeling[J].Journal of Mechanical Transmission,2021,45(06):38-45.
李云龙.滚动轴承-转子系统有限元离散建模非线性动力学数值分析[J].机械传动,2021,45(06):38-45. DOI: 10.16578/j.issn.1004.2539.2021.06.006.
Li Yunlong.Nonlinear Dynamics Numerical Analysis of Rolling Bearing-rotor System based on Finite Element Modeling[J].Journal of Mechanical Transmission,2021,45(06):38-45. DOI: 10.16578/j.issn.1004.2539.2021.06.006.
在滚动轴承和转子动力学的基础上,考虑滚动轴承滚动体与内外圈滚道的Hertz弹性接触力和径向游隙等非线性因素,根据Timoshenko梁-轴理论,建立滚动轴承-转子系统的有限元离散化模型,采用Newmark数值方法对其求解,利用分岔图、Poincaré映射图、频谱图、相图和轴心轨迹图,分析了滚动轴承-转子系统在转速和游隙等参数下的非线性动力响应行为。结果表明,转子系统呈现周期和非周期(拟周期或混沌)响应形式,在倍周期响应区域内有明显的跳变现象,经过混沌区后,转子系统经倍周期分岔进入混沌,后经过阵发性分岔离开混沌;故合理选择转子的工作转速和游隙,降低非线性轴承力引起的非周期振动,可提高系统运行的稳定性。分析结果为定量和定性分析该双转子的稳定性提供了参考依据。
Based on the bearing dynamics and rotor dynamics,considering the nonlinear factors such as Hertz elastic contact force and radial clearance between rolling element and inner and outer raceway of rolling bearing. According to Timoshenko beam-axis theory,the finite element discretization model of the bearing-rotor system is established and the Newmark numerical method is used to solve the problem. Meanwhile the nonlinear dynamic behaviors of the system are illustrated by means of bifurcation diagrams,Poincaré maps,frequency spectrum diagrams,phase diagrams and orbit plots. The results shows that,the rotor system presents periodic and aperiodic (quasi periodic or chaos) responses. After passing through the chaotic region,the rotor system enters into chaos through period doubling bifurcation,and then leaves chaos through paroxysmal bifurcation. Reasonable selection of rotor speed and clearance can reduce the non periodic vibration caused by nonlinear bearing force,which can improve the stability of the system. The analytic results will provide a referenced gist for the dynamic stability of dual-rotor-rolling-bearing by the quantitative and qualitative analysis.
滚动轴承-转子系统有限元法非线性动力学分岔混沌
Rolling bearing-rotor systemFinite element methodNonlinear dynamicsBifurcationChaos
CHU F L,ZHANG Z.Bifurcation and chaos in a rub-impact jeffcott rotor system[J].Journal of Sound and Vibration,1998,210(1):1-18.
TIWARI M,GUPTA K,PRAKASH O.Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor[J].Journal of Sound and Vibration,2000,238(5):723-756.
TIWARI M,GUPTA K,PRAKASH O.Dynamic response of an unbalanced rotor supported on ball bearings[J].Journal of Sound and Vibration,2000,238(5):757-779.
HARSHA S P.Nonlinear dynamic response of a balanced rotor supported by rolling element bearings due to radial internal clearance effect[J].Mechanism and Machine Theory,2005,41(6):688-706.
赵凌燕.滚动轴承-转子系统的非线性动力学研究[D].西安:西北工业大学,2003:10-33.
ZHAO Lingyan.Study on nonlinear dynamics of rolling bearing rotor systemt[D].Xi´an:Northwestern Polytechnical University,2003:10-33.
李自刚,李明,江俊.不对中联轴器-柔性转子系统非线性动力学行为[J].动力学与控制学报,2014,12(1):30-35.
LI Zigang,LI Ming,JIANG Jun.Effect of material crack flaws on dynamic fracture behavior[J].Journal of Dynamics and Control,2014,12(1):30-35.
唐云冰,高德平,罗贵火.滚动轴承非线性轴承力及其对轴承系统振动特性的影响[J].航空动力学报,2006,21(2):366-373.
TANG Yunbing,GAO Deping,LUO Guihuo.Non-linear bearing force of the rolling ball bearing and its influence on vibration of bearing system[J].Journal of Aerospace Power,2006,21(2):366-373.
张耀强,陈建军,唐六丁,等.滚动轴承-转子系统非线性参数、强迫联合振动[J].机械强度,2009,31(6):871-875.
ZHANG Yaoqiang,CHEN Jianjun,TANG Liuding,et al.Nonlinear vibrations of a rolling bearing-rotor system subject to parametrical and external excitations[J].Journal of Mechanical Strength,2009,31(6):871-875.
ZHANG Z Y,CHEN Y S.Harmonic balance method with alternating frequency/time domain technique for nonlinear dynamical system with fractional exponential[J].Applied Mathematics and Mechanics:English Edition,2014,35(4):423-436.
陈果.具有不平衡-碰摩耦合故障的转子-滚动轴承系统非线性动力学研究[J].振动与冲击,2008(4):43-48.
CHEN Guo.Nonlinear vibrations of a rolling bearing-rotor system subject to parametrical and external excitations[J].Journal of Vibration and Shock,2008(4):43-48.
LIEW A,FENG N,HAHN E J.Transient rotor dynamic modeling of rolling element bearing systems[J].Journal of Engineering for Gas Turbines and Power,2002,124:984-991.
路振勇.航空发动机转子系统动力学建模及非线性振动研究滚动[D].哈尔滨:哈尔滨工业大学,2017:17-43.
LU Zhenyong.Dynamical modeling and nonlinear vibration study of aero-engine rotor system[D].Harbin:Harbin Institute of Technology,2017:17-43.
刘红石.相对误差与Rayleigh阻尼比例系数的确定[J].湖南工程学院学报(自然科学版),2001(12):36-38.
LIU Hongshi.Relative errors and determination of Rayleigh damping scale coefficient[J].Journal of Hunan Institute of Engineering(Natural Science Edition),2001(12):36-38.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构