1.红河学院 工学院,云南省高校高原机械性能分析与优化重点实验室, 云南 蒙自 661199
张文斌(1981— ),男,云南建水人,博士,教授,主要研究方向为模式识别与智能诊断。
扫 描 看 全 文
张文斌,江洁,普亚松等.自适应局部迭代滤波与模糊熵在齿轮系统故障识别中的应用[J].机械传动,2021,45(05):146-152.
Zhang Wenbin,Jiang Jie,Pu Yasong,et al.Application of Adaptive Local Iterative Filtering and Fuzzy Entropy in Gear Fault Identification[J].Journal of Mechanical Transmission,2021,45(05):146-152.
张文斌,江洁,普亚松等.自适应局部迭代滤波与模糊熵在齿轮系统故障识别中的应用[J].机械传动,2021,45(05):146-152. DOI: 10.16578/j.issn.1004.2539.2021.05.022.
Zhang Wenbin,Jiang Jie,Pu Yasong,et al.Application of Adaptive Local Iterative Filtering and Fuzzy Entropy in Gear Fault Identification[J].Journal of Mechanical Transmission,2021,45(05):146-152. DOI: 10.16578/j.issn.1004.2539.2021.05.022.
针对齿轮系统实测信号受噪声干扰而不能准确反映故障特征的问题,提出了一种自适应局部迭代滤波与模糊熵相结合的故障识别方法。利用自适应局部迭代滤波可以将齿轮非平稳信号分解为有限个平稳的本质模态函数,由于自适应局部迭代滤波能有效分离出齿轮系统的转频信号,因此,以转频信号对应的本质模态函数为分界,计算前几个本质模态函数的模糊熵,最后,通过计算不同工况振动信号模糊熵的灰色关联度来识别齿轮系统不同的故障类型。结果表明,该方法能够有效地应用于齿轮系统的故障诊断。
Aiming at the problem that the measured signal of gear system can’t accurately reflect the fault characteristics due to noise interference, a fault identification method combining adaptive local iterative filtering and fuzzy entropy is proposed. By using adaptive local iterative filtering, the nonstationary signals of gears can be decomposed into finite stationary intrinsic mode functions. Since the adaptive local iterative filtering can effectively separate the rotating frequency signals of gear system, the fuzzy entropy of the first several intrinsic mode functions is calculated based on the intrinsic mode functions corresponding to the rotating frequency signals. Finally, grey relevance degree of the vibration signal’s fuzzy entropy under different working conditions is calculated to identify different fault types of gear system. The results show that the method can be effectively applied to the fault diagnosis of gear system.
故障分析齿轮信号处理自适应局部迭代滤波模糊熵
Fault analysisGearSignal processingAdaptive local iterative filteringFuzzy entropy
章翔峰,孙文磊,温广瑞.基于全矢频带能量谱的风电机组齿轮箱故障诊断方法研究[J].太阳能学报,2017,38(8):2090-2096.
ZHANG Xiangfeng,SUN Wenlei,WEN Guangrui.Fault diagnosis method of wind turbine gearbox based on full vector frequency band energy spectrum[J].Acta Energiae Solaris Sinica,2017,38(8):2090-2096.
龙泉,刘永前,杨勇平.基于粒子群优化BP神经网络的风电机组齿轮箱故障诊断方法[J].太阳能学报,2012,33(1):120-125.
LONG Quan,LIU Yongqian,YANG Yongping.Fault diagnosis method of wind turbine gearbox based on BP neural network trained by particle swarm optimization algorithm[J].Acta Energiae Solaris Sinica,2012,33(1):120-125.
HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,1998,454(1971):903-995.
CICONE A,LIU J,ZHOU H.Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis[J].Applied and Computational Harmonic Analysis,2016,41(2):384-411.
杨德友,王博,蔡国伟,等.适用于电力系统非平稳功率振荡信号特征提取的自适应迭代滤波算法研究[J].中国电机工程学报,2016,36(20):5431-5439.
YANG Deyou,WANG Bo,CAI Guowei,et al.Extracting oscillation modes from nonstationary signals for power system using adaptive local iterative filter[J].Proceedings of the CSEE,2016,36(20):5431-5439.
陈保家,汪新波,赵春华,等.基于自适应局部迭代滤波和能量算子解调的滚动轴承故障特征提取[J].南京理工大学学报,2018,42(4):445-452.
CHEN Baojia,WANG Xinbo,ZHAO Chunhua,et al.Fault feature extraction of rolling bearing based on ALIF and energy operator demodulation[J].Journal of Nanjing University of Science and Technology,2018,42(4):445-452.
来凌红,吴虎胜,吕建新,等.基于EMD和样本熵的滚动轴承故障SVM识别[J].煤矿机械,2011,32(1):249-252.
LAI Linghong,WU Husheng,LÜ Jianxin,et al.SVM recognition method based on emd and sample entropy in rolling bearing fault diagnosis[J].Coal Mine Machinery,2011,32(1):249-252.
郑近德,潘海洋,戚晓利,等.复合层次模糊熵及其在滚动轴承故障诊断中的应用[J].中国机械工程,2016,27(15):2048-2055.
ZHENG Jinde,PAN Haiyang,QI Xiaoli,et al.Composite hierarchical fuzzy entropy and its applications to rolling bearing fault diagnosis[J].China Mechanical Engineering,2016,27(15):2048-2055.
杨望灿,张培林,王怀光,等.基于EEMD的多尺度模糊熵的齿轮故障诊断[J].振动与冲击,2015,34(14):163-167.
YANG Wangcan,ZHANG Peilin,WANG Huaiguang,et al.Gear fault diagnosis based on multiscale fuzzy entropy of EEMD[J].Journal of Vibration and Shock,2015,34(14):163-167.
郑近德,陈敏均,程军圣,等.多尺度模糊熵及其在滚动轴承故障诊断中的应用[J].振动工程学报,2014,27(1):145-151.
ZHENG Jinde,CHEN Minjun,CHENG Junsheng,et al.Multiscale fuzzy entropy and its application in rolling bearing fault diagnosis[J].Journal of Vibration Engineering,2014,27(1):145-151.
LIN L,WANG Y,ZHOU H.Iterative filtering as an alternative algorithm for empirical mode decomposition[J].Advances in Adaptive Data Analysis,2009,1(4):543-560.
冯志鹏,褚福磊,左明健.机械系统复杂非平稳信号分析方法原理及故障诊断应用[M].北京:科学出版社,2018:100-101.
FENG Zhipeng,CHU Fulei,ZUO Mingjian.Principle and fault diagnosis application of complex nonstationary signal analysis method for mechanical system[M].Beijing:Science Press,2018:100-101.
PINCUS S M.Assessing serial irregularity and its implications for health[J].Annals of the New York Academy of Sciences,2001,954(1):245-267.
张文斌,江洁,俞利宾,等.互补集合经验模式分解与奇异值能量谱在风电齿轮故障识别中的应用[J].太阳能学报,2020,41(2):137-143.
ZHANG Wenbin,JIANG Jie,YU Libin,et al.Application of complementary ensemble empirical mode decomposition and singular value energy spectrum in wind power gear fault identification[J].Acta Energiae Solaris Sinica,2020,41(2):137-143.
张文斌,郭德伟,普亚松,等.谐波窗分解样本熵与灰色关联度在转子故障识别中的应用[J].中国电机工程学报,2013,33(21):132-137.
ZHANG Wenbin,GUO Dewei,PU Yasong,et al.Harmonic window decomposition sample entropy and grey relation degree in rotor fault recognition[J].Proceedings of the CSEE,2013,33(21):132-137.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构