1.东北石油大学 物理与电子工程学院, 黑龙江 大庆 163000
2.中国科学院 人机智能协同系统重点实验室 深圳先进技术研究院, 广东 深圳 518055
郑凯(1996— ),男,山东潍坊人,硕士,主要研究方向为无动力下肢外骨骼设计。
扫 描 看 全 文
郑凯,刘利利,王永奉等.无动力下肢外骨骼机器人研究综述及发展趋势[J].机械传动,2021,45(04):166-176.
Zheng Kai,Liu Lili,Wang Yongfeng,et al.Review and Development Trend of the Research on Unpowered Lower Extremity Exoskeleton Robot[J].Journal of Mechanical Transmission,2021,45(04):166-176.
郑凯,刘利利,王永奉等.无动力下肢外骨骼机器人研究综述及发展趋势[J].机械传动,2021,45(04):166-176. DOI: 10.16578/j.issn.1004.2539.2021.04.027.
Zheng Kai,Liu Lili,Wang Yongfeng,et al.Review and Development Trend of the Research on Unpowered Lower Extremity Exoskeleton Robot[J].Journal of Mechanical Transmission,2021,45(04):166-176. DOI: 10.16578/j.issn.1004.2539.2021.04.027.
无动力下肢外骨骼机器人,可运用于医疗康复、运动助力以及负载作业等场景。系统阐述了无动力下肢外骨骼机器人的发展背景及助力形式;对国内外无动力下肢外骨骼机器人的研究历程进行综述,按多关节和单关节进行分类,重点总结了两类机器人的结构、特点、优劣势以及效能评估等;围绕无动力下肢外骨骼机器人的关键技术与未来发展趋势进行了分析与展望。
The unpowered lower extremity exoskeleton robot can be used in medical rehabilitation, sports assistance, load operation and other scenes.The development background and the forms of assistance of unpowered lower extremity exoskeleton robot are systematically expounded. The research history of unpowered lower extremity exoskeleton robots at home and abroad is summarized, it is classified according to multi joint and single joint, and the structure, characteristics, advantages and disadvantages, and efficiency evaluation of the two types of robots are summarized. According to the key technologies and future development trend of unpowered lower extremity exoskeleton robots, the analysis and prospect are carried out.
无动力下肢外骨骼康复助力负载承重
UnpoweredLower extremity exoskeletonRehabilitation assistanceLoad bearing
MOONEY L M,ROUSE E J,HERR H M.Autonomous exoskeleton reduces metabolic cost of walking[C]//Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,August 26-30,2014,Chicago,IL,USA.New York:IEEE,2014:3065-3068.
DIJK W V,MEIJNEKE C,HERMAN V D K.Evaluation of the achilles ankle exoskeleton[J].IEEE transactions on neural systems and rehabilitation engineering,2017,25(2):151-160.
COLOMBO G,JOERG M,SCHREIER R,et al.Treadmill training of paraplegic patients using a robotic orthosis[J].Journal of Rehabilitation Research and Development,2000,37(6):693-700.
ESQUENAZI A,TALATY M,PACKEL A,et al.The rewalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury[J].American Journal of Physical Medicine & Rehabilitation,2012,91(11):911-921.
HE Y,LI N,WANG C,et al.Development of a novel autonomous lower extremity exoskeleton robot for walking assistance[J].Frontiers of Information Technology & Electronic Engineering,2019,20(3):318-329.
WEHNER M,PAEK Y L,WALSH C,et al.Experimental characterization of components for active soft orthotics[C]//Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob),June 24-27,2012,Rome,Italy.New York:IEEE,2012:1586-1592.
WEHNER M,QUINLIVAN B,AUBIN P M,et al.A lightweight soft exosuit for gait assistance[C]//Proceedings of the 2013 IEEE International Conference on Robotics and Automation,May 6-10,2013,Karlsruhe,Germany.New York:IEEE,2013:3362-3369.
隋立明,张立勋.气动肌肉驱动步态康复训练外骨骼装置的研究[J].哈尔滨工程大学学报,2011,32(9):1244-1248.
SUI Liming ,ZHANG Lixun.Development of an actuated exoskeleton with pneumatic muscles for gait rehabilitation training[J].Journal of Harbin Engineering University,2011,32(9):1244-1248.
周心慰.气动肌肉驱动的下肢康复外骨骼系统研究[D].杭州:浙江大学,2018:1-70.
ZHOU Xinwei.Research on the lower extremity rehabilitation exoskeleton system deiven by pneumatic muscles[D].Hangzhou:Zhejiang University,2018:1-70.
TU X,HUANG J,HE J.Leg hybrid rehabilitation based on hip-knee exoskeleton and ankle motion induced by FES[C]//Proceedings of the 2016 International Conference on Advanced Robotics and Mechatronics (ICARM),August 18-20,2016,Macou China.New York:IEEE,2016:237-242.
HUO W,MOHAMMED S,MORENO J C,et al.Lower limb wearable robots for assistance and rehabilitation:A state of the art[J].IEEE Systems Journal,2017,10(3):1068-1081.
YUAN P,WANG T,MA F,et al.Key technologies and prospects of individual combat exoskeleton[C].Proceedings of the Seventh Interation Conference on Intelligent Systems and Computing,2014,214:305-316.
李向军.外骨骼助力机器人研究现状及应用领域展望[J].中小企业管理与科技,2009(5):288.
LI Xiangjun.Research status and prospects of exoskeleton powered robots[J].Management & Technology of SME,2009(5):288.
YOSHIYUKI S,TAKERU S.Exoskeletal cyborg-type robot[J].Science Robotics,2018,3(17):3912.
TAGLIAMONTE N L,VALENTINI S,SUDANO A,et al.Switching assistance for exoskeletons during cyclic motions[J].Frontiers in Neurorobotics,2019,13:41.
HSU H,KANG I,YOUNG A J.Design and evaluation of a proportional myoelectric controller for hip exoskeletons during walking[C].Proceedings of the ASME 2018 Dynamic Systems and Control Conference.American Society of Mechanical Engineers Digital Collection,2018,51890:V001T13A005.
EDELMAN B J,MENG J,SUMA D,et al.Noninvasive neuroimaging enhances continuous neural tracking for robotic device control[J].Science Robotics,2019,4(31):6844.
GUI K,LIU H,ZHANG D.Toward multimodal human–robot interaction to enhance active participation of users in gait rehabilitation[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2017,25(11):2054-2066.
LI Y D,HSIAO-WECKSLER E T.Gait mode recognition and control for a portable-powered ankle-foot orthosis[C]//Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics(ICORR),June 24-26,2013,Seattle WA,USA.New York:IEEE,2013:1-8.
HUO W,MOHAMMED S,AMIRAT Y,et al.Fast gait mode detection and assistive torque control of an exoskeletal robotic orthosis for walking assistance[J].IEEE Transactions on Robotics,2018,34(4):1035-1052.
BARTLETT H L,GOLDFARB M.A phase variable approach for IMU-based locomotion activity recognition[J].IEEE Transactions on Biomedical Engineering,2018,65(6):1330-1338.
AHMADI M,O’NEIL M,FRAGALA-PINKHAM M,et al.Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy[J].Journal of Neuroengineering and Rehabilitation,2018,15(1):105.
LEDOUX E D.Inertial sensing for gait event detection and transfemoral prosthesis control strategy[J].IEEE Transactions on Biomedical Engineering,2018,65(12):2704-2712.
ZHANG J,CHEAH C C,COLLINS S H.Experimental comparison of torque control methods on an ankle exoskeleton during human walking[C]//Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA),May 26-30,2015,Seattle,WA,USA.New York:IEEE,2015:5584-5589.
SEO K,HYUNG S Y,CHOI B K,et al.A new adaptive frequency oscillator for gait assistance[C]//Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA),May 26-30,2015,Seattle,WA,USA.New York:IEEE,2015:5565-5571.
ZHENG E,MANCA S,YAN T,et al.Gait phase estimation based on noncontact capacitive sensing and adaptive oscillators[J].IEEE Transactions on Biomedical Engineering,2017,64(10):2419-2430.
REALMUTO J,KLUTE G,DEVASIA S.Preliminary investigation of symmetry learning control for powered ankle-foot prostheses[C]//Proceedings of the 2019 Wearable Robotics Association Conference (WearRAcon),March 25-27,2019,Scottsdale,AZ,USA.New York:IEEE,2019:40-45.
ZHANG J,FIERS P,WITTE K A,et al.Human-in-the-loop optimization of exoskeleton assistance during walking[J].Science,2017,356(6344):1280-1284.
MCGEER T.Passive dynamic walking[J].International Journal of Robotic Research,1990,9(2):62-82.
CAVAGNA G A,HEGLUND N C,TAYLOR C R.Mechanical work in terrestrial locomotion:two basic mechanisms for minimizing energy expenditure[J].American Journal of Physiology-Regulatory,Integrative and Comparative Physiology,1977,233(5):243-261.
ZELIK K E,KUO A D.Human walking isn't all hard work:evidence of soft tissue contributions to energy dissipation and return[J].Journal of Experimental Biology,2010,213(24):4257-4264.
YAGN N.Apparatus for facilitating walking,running,and jumping:US420179[P].1890-04-20.
AGRAWAL S K,BANALA S K,FATTAH A,et al.A gravity balancing passive exoskeleton for the human leg[C]//Proceedings of the Conference on Robotics:Science and Systems II,August 16-19,2006,Philadelphia,PA,USA.Philadelphia:University of Pennsylvania,2006:1-5.
BANALA S K,AGRAWAL S K,FATTAH A,et al.Gravity-balancing leg orthosis and its performance evaluation[J].IEEE Transactions on robotics,2006,22(6):1228-1239.
AGRAWAL S K,BANALA S K,FATTAH A,et al.Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2007,15(3):410-420.
ZHOU L,CHEN W H,CHEN W J,et al.Design of a passive lower limb exoskeleton for walking assistance with gravity compensation[J].Mechanism and Machine Theory,2020,150:103840.
GRABOWSKI A M,HERR H M.Leg exoskeleton reduces the metabolic cost of human hopping[J].Journal of Applied Physiology,2009,107(3):670-678.
HERR H,WALSH C,PALUSKA D,et al.Exoskeletons for running and walking:US2007123997[P].2007-05-31.
VAN D W,VAN K H,HEKMNA E.A passive exoskeleton with artificial tendons:Design and experimental evaluation[C]//Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics,June 29-July 1,2011,Zurich,Switzerland.New York:IEEE,2011:1-6.
WIETSE V D,KOOIJ H V D.XPED2:A passive exoskeleton with artificial tendons[J].IEEE Robotics & Automation Magazine,2014,21(4):56-61.
LEE K M,WANG D.Design analysis of a passive weight-support lower-extremity-exoskeleton with compliant knee-joint[C]//Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA),May 26-30,2015,Seattle WA,USA.New York:IEEE,2015:5572-5577.
YAN Q,ZHANG J,QI K.Structure design and kinematics analysis of a novel unpowered load-carrying lower extremity exoskeleton with parallel topology[J].Mathematical Problems in Engineering,2018:1-10.
YAN Q,ZHANG J,LI B,et al.Kinematic analysis and dynamic optimization simulation of a novel unpowered exoskeleton with Parallel Topology[J].Journal of Robotics,2019(1):1-12.
朱策策,张建军,阎强,等.无动力储能式辅助负重外骨骼弹簧刚度优化[J].机械设计与研究,2019,35(3):25-29.
ZHU Cece,ZHANG Jianjun,YAN Qiang,et al.Optimization of an energy-stored exoskeleton spring stiffness for assisting load[J].Machine Design & Research,2019,35(3):25-29.
LOVRENOVIC Z,DOUMIT M.Development and testing of a passive walking assist exoskeleton[J].Biocybernetics and Biomedical Engineering,2019,39(4):992-1004.
GUAN X,JI L,WANG R,et al.Optimization of an unpowered energy-stored exoskeleton for patients with spinal cord injury[C]//Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),August 16-20,2016,Orlando,FL,USA.New York:IEEE,2016:5030-5033.
VAN WIJDEVEN M A P .Design and evaluation of a passive hip exoskeleton to reduce the energy cost of human walking[D].Delft:Delft University of Technology,2016:13-50.
NASIRI R,AHMADI A,AHMADABADI M N.Reducing the energy cost of human running using an unpowered exoskeleton[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2018,26(10):2026-2032.
申京玉,张仕民,陈冲,等.无动力外骨骼助力机器人研究进展[J].机械传动,2020,44(2):166-176.
SHEN Jingyu ,ZHANG Shimin,CHEN Chong,et al.Research progress of unpowered exoskeleton assist robot[J].Journal of Mechanical Transmission,2020,44(2):166-176.
YUAN B,LI B,CHEN Y,et al.Designing of a passive knee-assisting exoskeleton for weight-bearing[C].Proceedings of the International Conference on Intelligent Robotics and Applications(ICIRA 2017).Berlin:Springer,2017:273-285.
KIM H J,LIM D H,KIM W S,et al.Development of a passive modular knee mechanism for a lower limb exoskeleton robot and its effectiveness in the workplace[J].International Journal of Precision Engineering and Manufacturing,2020,21(2):227-236.
CHAICHAOWARAT R,KINUGAWA J,KOSUGE K.Unpowered Knee Exoskeleton Reduces Quadriceps Activity during Cycling[J].Engineering,2018,4(4):471-478.
RANAWEERA R,GOPURA R,JAYAWARDENA T S S,et al.Development of a passively powered knee exoskeleton for squat lifting[J].Journal of Robotics,Networking and Artificial Life,2018,5(1):45-51.
XIE L,HUANG G,HUANG L,et al.An Unpowered flexible lower limb exoskeleton:walking assisting and energy harvesting[J].IEEE/ASME Transactions on Mechatronics,2019,24(5):2236-2247.
HIRAI H,OZAWA R,GOTO S,et al.Development of an ankle-foot orthosis with a pneumatic passive element[C]//Proceedings of the ROMAN 2006-The 15th IEEE International Symposium on Robot and Human Interactive Communication,Spetember 6-8,2006,Hatfield,UK.New York:IEEE,2006:220-225.
WIGGIN M B,SAWICKI G S,COLLINS S H.An exoskeleton using controlled energy storage and release to aid ankle propulsion[C]//Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics,June 29-July1,2011,Zuich,Switzerland.New York:IEEE,2011:1-5.
COLLINS S H,WIGGIN M B,SAWICKI G S.Reducing the energy cost of human walking using an unpowered exoskeleton[J].Nature,2015,522(7555):212-215.
YANDELL M B,TACCA J R,ZELIK K E.Design of a low profile,unpowered ankle exoskeleton that fits under clothes:overcoming practical barriers to widespread societal adoption[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2019,27(4):712-723.
LECLAIR J.Development and testing of an unpowered ankle exoskeleton for walking assist[D].Ottawa:University of Ottawa,2016:1-125.
LECLAIR J,PARDOEL S,HELAL A,et al.Development of an unpowered ankle exoskeleton for walking assist[J].Disability and Rehabilitation:Assistive Technology,2020,15(1):1-13.
PARDOEL S,DOUMIT M.Development and testing of a passive ankle exoskeleton[J].Biocybernetics and Biomedical Engineering,2019,39(3):902-913.
WANG X,GUO S,QU H,et al.Design of a purely mechanical sensor-controller integrated system for walking assistance on an ankle-foot exoskeleton[J].Sensors,2019,19(14):3196.
WATERS R L,MULROY S.The energy expenditure of normal and pathologic gait[J].Gait & Posture,1999,9(3):207-231.
POWER V,O'SULLIVAN L,DE EYTO A,et al.Exploring user requirements for a lower body soft exoskeleton to assist mobility[C]//Proceedings of the 9th ACM International Conference on P Ervasive Technologies Related to Assistive Environments,June,2016.New York:ACM,2016:1-6.
王颜,房立金.机械式仿骨骼肌变刚度机构原理及设计[J].机器人,2015,37(4):506-512.
WANG Yan,FANG Lijin.Principle and design of mechanically musculoskeletal variable-stiffness mechanism[J].Robot,2015,37(4):506-512.
FARRIS D J,SAWICKI G S.The mechanics and energetics of human walking and running:a joint level perspective[J].Journal of the Royal Society Interface,2012,9(66):110-118.
DONELAN J M,KRAM R,KUO A D.Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking[J].Journal of Experimental Biology,2002,205(23):3717-3727.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构