1.新疆大学 电气工程学院, 新疆 乌鲁木齐 830047
2.新疆维吾尔自治区特种设备检验研究院, 新疆 乌鲁木齐 830011
杨武帮(1993— ),男,甘肃白银人,硕士研究生,研究方向为智能故障诊断。
扫 描 看 全 文
杨武帮,高丙朋,陈飞等.基于变分模态分解和PSO-SVM的起重机齿轮箱故障诊断[J].机械传动,2021,45(04):105-111.
Yang Wubang,Gao Bingpeng,Chen Fei,et al.Fault Diagnosis of Crane Gearbox based on Variational Mode Decomposition and PSO-SVM[J].Journal of Mechanical Transmission,2021,45(04):105-111.
杨武帮,高丙朋,陈飞等.基于变分模态分解和PSO-SVM的起重机齿轮箱故障诊断[J].机械传动,2021,45(04):105-111. DOI: 10.16578/j.issn.1004.2539.2021.04.018.
Yang Wubang,Gao Bingpeng,Chen Fei,et al.Fault Diagnosis of Crane Gearbox based on Variational Mode Decomposition and PSO-SVM[J].Journal of Mechanical Transmission,2021,45(04):105-111. DOI: 10.16578/j.issn.1004.2539.2021.04.018.
起重机齿轮箱的振动信号具有信噪比低、非线性的特点,需要一定的专业知识和经验才能实现故障诊断。为了实现起重机齿轮箱的智能故障诊断,提出了一种基于变分模态分解(Variational modal decomposition,VMD)改进小波降噪和粒子群算法(Particle swarm optimization,PSO)优化支持向量机(Support vector machine,SVM)的智能故障诊断方法。首先,利用VMD将振动信号分解,得到不同尺度的本征模态函数(Intrinsic mode function,IMF),将分解的高频分量进行改进小波降噪后和低频分量完成信号重构;然后,提取重构信号的特征参数构建特征向量,使用核主分量分析(Kernel principal component analysis,KPCA)对向量降维处理实现特征信息融合;最后,利用PSO优化后的SVM进行故障识别分类。实验验证表明,基于VMD改进小波信号预处理和PSO算法优化SVM的模型具有很高的识别准确率,能够有效、准确地对起重机齿轮箱的故障类型进行识别和分类。
The vibration signal of crane gearbox has the characteristics of low signal-to-noise ratio and nonlinearity,so it needs some professional knowledge and experience to realize fault diagnosis. In order to realize intelligent fault diagnosis of crane gearbox,an intelligent fault diagnosis method based on variational modal decomposition(VMD) improved wavelet denoising and particle swarm optimization(PSO) support vector machine(SVM) is proposed. Firstly, VMD is used to decompose the vibration signal to obtain the intrinsic mode function(IMF) of different scales. The decomposed high frequency component is improved after wavelet de-noising and the low frequency component is reconstructed. Then the feature parameters of reconstructed signal are extracted to construct the feature vector, and kernel principal component analysis(KPCA) is used to realize the feature information fusion. Finally, the PSO optimized SVM is used for fault identification and classification. The experimental results show that the SVM model based on VMD improved wavelet signal preprocessing and PSO algorithm has high recognition accuracy and can effectively and accurately identify and classify the fault types of the crane gearbox.
起重机齿轮箱变分模态分解小波分解粒子群算法支持向量机
Crane gearboxVariational mode decompositionWavelet decompositionParticle swarm optimizationSupport vector machine
邵岩,卢迪,杨广学.分数阶傅里叶变换在轴承故障诊断中的应用[J].哈尔滨理工大学学报,2017,22(3):68-72.
SHAO Yan,LU Di,YANG Guangxue.Application of fractional fourier transform in bearing fault diagnosis[J].Journal of Harbin University of Science and Technology,2017,22(3):68-72.
张安安,黄晋英,卫洁洁,等.基于EMD-SVD与PNN的行星齿轮箱故障诊断研究[J].机械传动,2018,42(12):160-165.
ZHANG An'an,HUANG Jinying,WEI Jiejie,et al.Fault diagnosis of planetary gear box based on EMD-SVD and PNN[J].Journal of Mechanical Transmission,2018,42(12):160-165.
DRAGOMIRETSKIY K,ZOSSO D.Variational mode decomposition[J].IEEE Transactions on Signal Processing,2014,62(3):531-544.
丁承君,付晓阳,冯玉伯,等.基于参数优化VMD的齿轮箱故障特征提取方法[J].机械传动,2020,44(3):171-176.
DING Chengjun,FU Xiaoyang,FENG Yubo,et al.Fault feature extraction method based on parameter optimized VMD[J].Journal of Mechanical Transmission,2020,44(3):171-176.
周福成,唐贵基,何玉灵.基于改进VMD的风电齿轮箱不平衡故障特征提取[J].振动与冲击,2020,39(5):170-176.
ZHOU Fucheng,TANG Guiji,HE Yuling.Extraction of unbalanced fault characteristics of wind power gearbox based on improved VMD[J].Vibration and Impact,2020,39(5):170-176.
郑小霞,贾文慧,周国旺,等.基于变分模态分解和ANFIS的齿轮故障诊断[J].机械传动,2018,42(3):149-154.
ZHENG Xiaoxia,JIA Wenhui,ZHOU Guowang,et al.Gear fault diagnosis based on variational mode decomposition and ANFIS[J].Journal of Mechanical Transmission,2018,42(3):149-154.
于磊,陈森,张瑞,等.深度支持向量机在齿轮故障诊断中的应用[J].机械传动,2019,43(8):150-156.
YU Lei,CHEN Sen,ZHANG Rui,et al.Application of depth support vector machine in gear fault diagnosis[J].Journal of Mechanical Transmission,2019,43(8):150-156.
张曹,陈珺,刘飞.基于EMD近似熵和TWSVM的齿轮箱故障诊断[J].煤矿机械,2017,38(4):142-145.
ZHANG Cao,CHEN Jun,LIU Fei.Gearbox fault diagnosis based on EMD approximate entropy and TWSVM[J].Coal Mine Machinery,2017,38(4):142-145.
ZHAO W Q,CAI R,WANG L W,et al.Fault diagnosis of wind turbine gearbox based on least square support vector machine with genetic algorithm[J].Advanced Materials Research,2014,2863:620-623.
FENG Z,LIANG M,ZHANG Y,et al.Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation[J].Renewable Energy,2012,47(1):112-126.
司刚全,李水旺,石建全,等.采用改进果蝇优化算法的最小二乘支持向量机参数优化方法[J].西安交通大学学报,2017,51(6):14-19.
SI Gangquan,LI Shuiwang,SHI Jianquan,et al.Parameter optimization method for least squares support vector machine using improved fruit fly optimization algorithm[J].Journal of Xi 'an Jiaotong University,2017,51(6):14-19.
RANAEE V,EBRAHIMZADEH A,GHADERIR.Application of the PSO-SVM model for recognition of control chart patterns[J].ISATransactions,2010,49(4):577-586.
HE Y,WANG Z Y.Regularized kernel function parameter of KPCA using WPSO-FDA for feature extraction and fault recognition of gearbox[J].Journal of Vibro Engineering,2018,20(1):225-239.
刘秀丽,徐小力,吴国新,等.基于变分模态分解的故障弱信息提取方法[J].华中科技大学学报(自然科学版):1-6[2020-07-02].
LIU Xiuli,XU Xiaoli,WU Guoxin,et al.Fault weak information extraction method based on variational mode decomposition[J].Journal of Huazhong University of Science and Technology(Natural Science Edition):1-6[2020-07-02].
杨洪柏,蒋超,石坤举,等.基于变分模态分解参数估计的滚动轴承故障信息提取方法[J].轴承,2016(10):49-52.
YANG Hongbai,JIANG Chao,SHI Kunju,et al.Rolling bearing fault information extraction method based on variational mode decomposition parameter estimation[J].Bearing,2016(10):49-52.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构